

2016 Mathematics Paper 1 (Non-calculator)

National 5

Finalised Marking Instructions

© Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

 $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0\cdot 3} \text{ must be simplified to } 50 \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg $(x^3+2x^2+3x+2)(2x+1)$ written as $(x^3+2x^2+3x+2)\times 2x+1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark. Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed Marking Instructions for each question

Question			Ger	neric Scheme	Illustrative Scheme	Max Mark
1.			Ans: $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$			2
			• ¹ calculate	$\frac{1}{2}$ p		
			• ² solution		$\bullet^2 \begin{pmatrix} -3 \\ -4 \end{pmatrix}$	
Note		ect an	swer without	working award 2/2		•
			as bad forn	-		
3. 4.	Wher For - -	$\frac{-3}{-4}$ a	re are no brac award 1/2	ckets ie $\begin{array}{c} -3 \\ -4 \end{array}$ awarc		
	eg av	vard 1	(a) $(-3, -4)$			
			(b) $-3 + (-4)$) = -7		
			(c) $\sqrt{(-3)^2}$ +	$-(-4)^2 = 5$		
		-	served Respo	nses:		
1. ((4 (-6)+	-(-5 (-1)	$=\begin{pmatrix} -1\\ -7 \end{pmatrix}$	award 1/2		
2.	$\frac{1}{2}\left(\left(\begin{array}{c}4\\-4\end{array}\right)\right)$	₩ 6)+(-	$ \begin{pmatrix} -5 \\ -1 \end{pmatrix} = \begin{pmatrix} -0.5 \\ -3.5 \end{pmatrix} $	award 1/2		
3.	$\begin{pmatrix} 4 \\ -6 \end{pmatrix}$	$+\frac{1}{2}\left(-\frac{1}{2}\right)$		award 1/2		

Que	stion		Generic Scheme	Illustrative Scheme	Max Mark
2.			Ans: $\frac{13}{28}$		2
			Method 1		
			• ¹ start the calculation correctly	• $\frac{7}{21} + \frac{6}{21}$	
			• ² consistent answer in simplest form	• $^{2}\frac{13}{28}$	
			Method 2		
			• ¹ start the calculation correctly	• $\frac{3}{12} + \frac{6}{28}$ or equivalent	
			• ² consistent answer in simplest form	• $^{2}\frac{13}{28}$	
Note		ct ans	wer without working award 0/2.		
2. F	inal a	answe	er must be in simplest form eg for $\frac{39}{84}$	award 1/2 √×	
	-		vailable where simplifying is required.		
4.	For su	ubseq	uent incorrect working, • ² is not avail	able eg for $\frac{13}{28} = 2\frac{2}{28} = 2\frac{1}{14}$ award	1/2 √×
Com	mon	ly Ob	served Responses:		
1. F	1. For an answer of $\frac{9}{40}$ obtained from				
	(a) N	letho	d 1: $\frac{3}{4}\left(\frac{1}{3}+\frac{2}{7}\right) = \frac{3}{4} \times \frac{3}{10} = \frac{9}{40}$ aware	d 0/2	
	(b) <i>N</i>	\etho	d 2: $\frac{3}{12} + \frac{6}{28} = \frac{9}{40}$ awar	rd 1/2 √×	

Que	estion	Generic Scheme	Illustrative Scheme	Max Mark
3.		Ans: 157 cm ²		3
		Method 1		
		• ¹ appropriate fraction	• $\frac{45}{360}$ or equivalent	
		• ² correct substitution into area of sector formula	$\bullet^2 \frac{45}{360} \times 3.14 \times 20^2$	
		• ³ calculate area of sector	• ³ 157 (cm ²)	
		Method 2		
		\bullet^1 appropriate fraction	• $\frac{360}{45}$ or equivalent	
		• ² correct substitution into area of sector formula	• ² 3.14×20 ² ÷ $\frac{360}{45}$	
		• ³ calculate area of sector	• ³ 157 (cm ²)	
Not	-	answer without working award 0/3.		
		$\div 8$ " in working as evidence of $\frac{45}{240}$.		
		360 *× 3·14" in working as evidence of subs	titution into formula.	
Con	nmonly	Observed Responses:		
1.	$\frac{45}{360} \times \pi r$	$x^{2} = 8 \times 3.14 \times 20^{2} = 10048 (cm^{2})$	award 2/3 √√×	
2.	$\frac{360}{45} \times \pi r$	$x^{2} = 8 \times 3.14 \times 20^{2} = 10048 (cm^{2})$	award 2/3 √×√	
3.	$\frac{45}{360} \times 3.$	$14 \times 20^2 \left(= \frac{45}{360} \times 3.14 \times 40 \right) = 15.7 (\text{cm}^2)$	award 2/3 √√×	
4.	$\frac{45}{360} \times 3 \cdot$	$14 \times 40 = 15 \cdot 7 (cm^2)$	award 2/3 √×√	
5.	$\frac{45}{360} \times \pi >$	< 20 ²	award 1/3 √××	
6. 3	8·14×20	$^{2} = 1256(\text{cm}^{2})$	award 0/	

Question		Generic Scheme	Illustrative Scheme	Max Mark
4.	(a)	Ans: $2c + 3d = 9 \cdot 6$		1
		• ¹ construct equation	• ¹ $2c+3d=9\cdot 6$	
Not	es:			
Con	nmonl	y Observed Responses:		
	(b)	Ans: $3c + 4d = 13 \cdot 3$		1
		• ¹ construct equation	• 1 3 <i>c</i> +4 <i>d</i> =13·3	
Not	es:			
Con	nmonl	y Observed Responses:		
	(C)	Ans: A cloak requires 1.5 m ² of material A dress requires 2.2 m ² of material		4
		• ¹ evidence of scaling	• 1 eg $6c + 9d = 28 \cdot 8$ $6c + 8d = 26 \cdot 6$	
		• ² follow a valid strategy through to produce values for <i>c</i> and <i>d</i>	\bullet^2 values for c and d	
		• ³ calculate correct values for c and d	• ³ $c = 1.5$ and $d = 2.2$	
		• ⁴ communicate answers in square metres	• ⁴ cloak 1·5 m ² dress 2·2 m ²	
2. • 3. (Correc ⁴ is nc (a) wh cor bot (b) wh	It answer without working award $0/4$. ot available if either c or d is negative. ere a candidate calculates values for c a nclusion containing the words 'cloak' an th cases ere a candidate only calculates a value f the conclusion contains the word 'cloak'	d 'dress' along with the correct un for either c or d , \bullet^4 can only be away	rded

Question	Generic Scheme	Illustrative Scheme	Max Mark
5. (a)	Ans: $W = 20A + 40$		3
	• ¹ gradient	• ¹ $\frac{240}{12}$ or equivalent	
	• ² substitute gradient and a point into $y = mx + c$ or y - b = m(x - a)	• ² $y - 100 = \frac{240}{12}(x - 3)$ or $y - 340 = \frac{240}{12}(x - 15)$ or $100 = \frac{240}{12} \times 3 + c$	
		or $340 = \frac{240}{12} \times 15 + c$	
	• ³ state equation in terms of <i>W</i> and <i>A</i> and in simplest form (remove any brackets and collect constants)	• $^{3}W = 20A + 40$ or equivalent	
2. • ³ is not av eg $W = 20$ 3. Where $\frac{240}{12}$	swer without working award 3/3. vailable for invalid subsequent working $A + 40 \rightarrow W = 2A + 4$ award 2/3 without a simplified incorrectly \bullet^2 is still as $\frac{0}{3} = \frac{20}{3} \rightarrow y - 100 = \frac{20}{3}(x-3) \rightarrow W = 0$	⁄√× vailable	
Commonly Ob	oserved Responses:		
1. $y = 20x + 4$ 2. $y = 20x$	award 1/		
3. $W = \frac{20}{1}A + \frac{1}{1}A$	+ 40 award 2/	3 √√×	
4. $y - 100 = 2$	$0x - 3 \rightarrow W = 20A + 97$ award 2/	3 √×√	
(b)	Ans: 20 × 12 + 40 = 280 kg		1
	 ¹ calculate weight using equation from part (a) 	• ¹ 20×12+40 = 280 (kg) stated explicitly	
2. Follow three	ber greater than 10 or a non-intege	able if 12 is multiplied or divided by a r value followed by an addition or	
Commonly Ob	oserved Responses:		

Que	estion		Generic Scheme	Illustrative Scheme	Max Mark
6.			Ans: real and distinct		2
			• ¹ find discriminant	• ¹ 53 $\left[5^2 - 4 \times 7 \times (-1)\right]$	
			• ² state nature of roots	• ² real and distinct (or equivalent)	
Not	es:				
1.	Corre	ct ans	swer without working award 0/2		
2.	25 + 2	$28 \rightarrow$	real and distinct award 2/2		
			= 52 \rightarrow real and distinct award 1	/2 ×√	
4.	Accep	t 're a	al roots'		
			ept 'two distinct roots'		
6.			ard \bullet^2 where conclusion is ambiguous		
	eg 53	\rightarrow ro	pots are real and even award 1/2	√x	
Cor	nmon	ly Ob	served Responses:		
	1. $\frac{-5\pm\sqrt{5^2-4\times7\times(-1)}}{2\times7} = \frac{-5\pm\sqrt{53}}{2\times7}$ award 1/2 \checkmark ×				
	2. –	$3 \rightarrow r$	no real roots aware	1/2 ×√	
	3. –	$3 \rightarrow r$	no roots awar	d 0/2	

Que	estio	n	Generic Scheme	Illustrative Scheme	Max Mark
7.	(a)		Ans: (8, 4, 0)		1
			• ¹ state coordinates of B	• ¹ (8, 4, 0)	
Not 1.		kets I	must be shown.		
Cor	nmor	nly O	bserved Responses:		
	(b)		Ans: 7		3
			• ¹ know how to find AM^2	• 1 3^{2} + 2^{2}	
			\bullet^2 know how to find AV	• $\sqrt{6^2 + (3^2 + 2^2)}$	
			• ³ find length of AV	• ³ 7	
(ð			ow to find AM ²] (b)[know how $(6^2 + 4^2)$ $^{\bullet 1}$ 6^2	w to find VN ²] (c)[know how to fi +2 ² $^{-1}$ $6^2 + 3^2$	nd VP ²]
		-	$\frac{1}{4}(6^{2}+4^{2})$ • ² $\sqrt{3^{2}+6}$ • ³ 7)
	1	n)	$\rightarrow \bullet^2 \sqrt{3^2 + 2^2 + 6^2} \rightarrow \bullet^3 =$	7 award 3/3	
2.		7 2 6	$\rightarrow \sqrt{7^2 + 2^2 + 6^2} = \sqrt{89}$	award 1/3 ×√×	

Questio	n Generic Scheme	Illustrative Scheme	Max Mark				
8.	Ans: $x = -\frac{5}{8}$		3				
	Method 1 • ¹ multiply throughout by 6	• 1 4x-5=12x					
	• ² rearrange	• 2 -8 <i>x</i> = 5 or -5 = 8 <i>x</i>					
	• ³ solve for x	• $x = -\frac{5}{8}$ or $x = -0.625$					
	Method 2 • ¹ rearrange	• $\frac{4}{3}x = -\frac{5}{6}$					
	• ² start to solve for x	• ² $x = -\frac{5}{6} \times \frac{3}{4}$ or $24x = -15$ or equivalent					
	• ³ solve for x	• ³ $x = -\frac{5}{8}$ or $x = -0.625$					
Notes: 1. Corre	ect answer without working award 0/3						
3. ● ¹ is 4. For t	available for multiplying throughout by an not available for $\frac{4x-5}{6} = 2x, \frac{12x-15}{18} = 2x$ he award of \bullet^3 , the answer must be a nor hly Observed Responses:	x etc.					
9.	Ans: $\frac{2\sqrt{5}}{5}$						
	• ¹ correct substitution						
	• ² consistent answer	$\bullet^2 \frac{2\sqrt{5}}{5}$					
Notes: 1. Corre	Notes: 1. Correct answer without working award 0/2.						
1. ● ² is	Commonly Observed Responses: 1. • ² is not available where there is invalid subsequent working						
eg –	eg $\frac{2\sqrt{5}}{5} = 2\sqrt{5}$ award $1/2 \checkmark \times$						
2. $\frac{2}{\sqrt{x}}$	$\frac{\sqrt{x}}{\sqrt{x}} = \frac{2\sqrt{x}}{x}$ award 1/2 × \checkmark						

Que	estion	ı	Generic Scheme	Illustrative Scheme	Max Mark
10.			Ans:		3
			 ¹ coordinates of turning point correct 	• ¹ (3,1)	
			• ² sketch parabola with minimum turning point consistent with • ¹	 ² parabola with minimum turning point consistent with •¹ 	
			• ³ <i>y</i> -intercept correct	• ³ (0,10) or 10	

- 1. Correct answer without working award 3/3.
- Where the coordinates of the turning point are not stated elsewhere, then for a sketch of a parabola with minimum turning point (3,-1), (-3,±1) or (±1,±3) award •² but not •¹. Otherwise •² is only available where the minimum turning point indicated on the sketch is consistent with that stated elsewhere.
- 3. The sketch of the parabola need not meet or cut the *y*-axis for the award of \bullet^2 .
- 4. •² is not available if the parabola has a maximum turning point.
- 5. \bullet^3 is not available if the minimum turning point is on the y-axis.
- 6. Award \bullet^3 where the *y*-intercept is calculated to be at y=10 and is plotted on the diagram at (0,10) but annotated as (10,0). Treat this special case as bad form.

Que	Question		Generic Scheme	Illustrative Scheme	Max Mark	
11.			Ans: $\sin^2 x^\circ$		2	
			 ¹ identify correct trigonometric identity to be used 	• $\frac{\sin x}{\cos x}$ or $\frac{\sin^2 x}{\cos^2 x}$		
			• ² use correct trigonometric identity to simplify expression	• ² $\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x$		
Not	es:					
			hout working award 0/2 gns are not required			
2. 3.	• ² is r	not a	vailable if there is invalid subsequent	working		
	eg (a	a) <u>si</u>	$\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x = 1 - \cos x \text{awarc}$	1/2 √×		
			$\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x = \sin^2 x = 1 - \cos^2 x \text{ award}$			
4.	• ¹ is r	not a	vailable if there are no variables e.g.	$\frac{\sin^2}{\cos^2} \times \cos^2 = \sin^2 \text{ award } 1/2 \times \checkmark$		
5.	• ¹ is r	not a	vailable if candidate simply states tar	$hx = \frac{\sin x}{\cos x}$ and $\sin^2 x + \cos^2 x = 1$ then	n	
	proce	eds	no further	COS X		
6.	Alteri	nativ	e acceptable strategies			
	(a)•1	tan	$x \cos x = \sin x$	(b) $\bullet^1 \left(\frac{o}{a}\right)^2 \left(\frac{a}{h}\right)^2$		
	• ²	tar	$n^2 x \cos^2 x = \sin^2 x$	• $2 \frac{o^2 a^2}{a^2 h^2} = \frac{o^2}{h^2} = \sin^2 x$		
			award 2/2	award 2/2		
Con	Commonly Observed Responses:					
		-	$cos^4 x$	0/2		
	$\sin^2 x$	- × CO	$s^2 x = \frac{\cos x}{\sin^2 x}$ award	U/ Z		
2. t	$an^2 x$	(1 - s)	$in^2 x$) = $tan^2 x - tan^2 x sin^2 x$ award	0/2		

Qu	esti	on	Generic Scheme	Illustrative Scheme	Max Mark
12.	(a)		 Ans: (2x+1)(x+8) ¹ find an expression for the area of the rectangle 	¹ $(2x+1)(x+8)$ or equivalent	1
1.	Notes: 1. If solution to (a) appears in (b) or (c) award $1/1$ 2. (a) Accept $(2x+1) \times (x+8)$, $2x+1 \times x+8$				

(b) Do not accept 2x+1(x+8), x+8(2x+1) unless correct expansion appears in (a) (b) or (c)

Commonly Observed Responses:

12.	(b)	Ans: proof		3		
		• ¹ find expanded expression for area of the rectangle	• ¹ $2x^2$ + 16 <i>x</i> + <i>x</i> + 8			
		• ² find expanded expression for area of the triangle	• ² $3x^2 + 15x$			
		• ³ equate expanded expressions and rearrange into required form	• ³ $2x^2 + 16x + x + 8 = 3x^2 + 15x$ $\Rightarrow x^2 - 2x - 8 = 0$			
Notes: 1. If solution to (b) appears in (a) or (c) then all three marks are available						

Question	Generic Scheme	Illustrative Scheme	Max Mark				
12. (c)	Ans: 12 cm and 9 cm		3				
	• ¹ factorise $x^2 - 2x - 8$	• $(x-4)(x+2)$ • $x=4$ and $x=-2$					
	\bullet^2 solve equation	• ² $x = 4$ and $x = -2$					
	• ³ reject invalid value of x and state length and breadth of rectangle	• ³ 12 (cm) and 9 (cm)					
	lotes: . Correct answer without working award 0/3. . If solution to (c) appears in (a) or (b) then all three marks are available.						
3. • ¹ is avai	. •1 is available for $\frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times (-8)}}{2 \times 1}$						

4. For an answer obtained by guess and check award 0/3

Commonly Observed Responses:

1.(a)
$$(2x+1)(x+8) = 0 \rightarrow x = -\frac{1}{2}$$
 and $x = -8$ award 1/3 × \checkmark ×

(b) $x = -\frac{1}{2}$ and x = -8 without factorised quadratic equation stated award 0/3

[END OF MARKING INSTRUCTIONS]

2016 Mathematics Paper 2

National 5

Finalised Marking Instructions

© Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal:
$${}^{5}x = 2$$
 and $x = -4$
 ${}^{6}y = 5$ $y = -7$
Horizontal: ${}^{5}x = 2$ and $x = -4$
 ${}^{6}y = -7$
Vertical: ${}^{5}x = 2$ and $y = 5$
 ${}^{6}x = -4$ and $y = -7$

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

 $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8^*

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg $(x^3+2x^2+3x+2)(2x+1)$ written as $(x^3+2x^2+3x+2)\times 2x+1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark. Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed Marking Instructions for each question

Qu	Question		Generic Scheme	?	Illustrative Scheme	Max Mark
1.			Ans: 27·(25408) grams			3
			• ¹ know how to decrease	by 8%	• ¹ × 0.92	
			• ² know how to calculate sugar content after 3 y		• ² 35×0.92^3	
			• ³ evaluate		• ³ 27 · (25408) (grams)	
	c es: Corre	ct an	swer without working aw	ard 3/3		
2.	Do no	t pen	alise incorrect rounding			
3.	possib	oility	of awarding 2/3		rking must be followed through to give	e the
	eg Foi	r 35×	$0.08^3 = 0.01792$, with we	orking	award 2/3 × V	
4.			sion is used,			
	• •	-	with 0.92 , \bullet^1 is not availather $0.92^3 = 44.94$ award			
	(b) al	ong v	with an incorrect percenta	$12/3 \times 1$ and $12/3 \times 1$	• ² are not available	
			$1.08^3 = 27.78$ award			
Со	nmon	ly Ob	served Responses:			
		-				
	•		be shown			
			$= 44 \cdot 0 \dots$ 2 \cdot 8 \rightarrow 35 \cdot 3 \times 2 \cdot 8 = 26 \cdot 6	award 2/3		
			$2 \cdot 0 \rightarrow 33 \cdot 3 \times 2 \cdot 0 = 20 \cdot 0$ $= 32 \cdot 2$	award 1/3		
			= 32 · 2 < 3 = 96 · 6	award 1/		
-			$3 = 8 \cdot 4$	award 0/		

Question			Generic Scheme	Illustrative Scheme	Max Mark
2.			Ans: 8×10 ⁻⁹ grams		2
			• ¹ correct method	• 1 12 ÷ (1 · 5 × 10 ⁹)	
			• ² answer	• ² 8×10 ⁻⁹	
Note	es:				
1. (Correc	ct ans	wer without working award 2/2		
(2. •² is still available if there is additional multiplication or division by 1000 (but by no other numbers). eg award 1/2 ×√ for (a) 12÷(1.5×10⁹)÷1000 = 8×10⁻¹² 				

(b)
$$(1.5 \times 10^9) \div 12 \times 1000 = 1.25 \times 10^{11}$$

No working necessary	
1. $(1.5 \times 10^9) \div 12 = 1.25 \times 10^8$	award 1/2 ×√
2. $(1.5 \times 10^9) \div 12 = 1.2 \times 10^8$ or 1.3×10^8	award 1/2 ×√
3. $(1.5 \times 10^9) \times 12 = 1.8 \times 10^{10}$	award 1/2 ×√

Question		Generic Scheme	Illustrative Scheme	Max Mark
3.		Ans: v – u		1
		• ¹ correct answer	• ¹ v – u or - u + v or v + – u	
Note	es:			
Com	nmonly Ol	bserved Responses:		
4.		Ans: $3(x+4)(x-4)$		2
		• ¹ begin to factorise	• 1 3(x^{2} -16)	
		• ² factorise fully	• $3(x^2-16)$ • $3(x+4)(x-4)$	
5. S (pecial ca a) award b) award	factors must be shown together to ses $1/2$ for $3(x-4)^2$ or $(x+4)(x-4)$ 0/2 for eg $(3x-8)(x+6)bserved Responses:$		
5.		Ans: ABC = 74°		3
		 ¹ calculate the size of angle AOE or CAO 	• ¹ 37	
		• ² calculate the size of angle CAB	• ² 53	
		• ³ calculate the size of angle ABC	• ³ 74	
2. F	ull marks or an ans	may be awarded for information n wer of 74° with no relevant workir able for correct calculation of 180 -	ng award 0/3	
Com	nmonly Ol	bserved Responses:		

Que	stion		Generic Scheme	Illustrative Scheme	Max Mark
6.	(a)		Ans: mean = 13 minutes, st dev = 5·7 minutes		4
			• ¹ calculate mean	• ¹ 13 (minutes)	
			• ² calculate $\left(x - \overline{x}\right)^2$	• ² 0, 9, 9, 81, 64, 1	
			• ³ substitute into formula	$\bullet^3 \sqrt{\frac{164}{5}}$	
			• ⁴ calculate standard deviation	• ⁴ 5·7 (minutes)	
	or an	e of a	ver of 13 and 5.7 without working a alternative formula award \bullet^2 , \bullet^3 and calculate $\sum x$ and $\sum x^2$ \bullet^2 7	• ⁴ as follows:	
				$\sqrt{\frac{\frac{1178 - \frac{78^2}{6}}{5}}{5}}$ 5.7 (minutes)	
Com	mon	ly Ob	served Responses:		
	(b)		Ans: valid statements		2
			• ¹ compare means	• ¹ On average Sophie's waiting time was longer.	
			• ² compare standard deviations	 ² Sophie's waiting times were more consistent. 	

Question	Generic Scheme	Illustrative Scheme	Max Mark				
Notes: 1. Answers mu	Notes: 1. Answers must be consistent with answers to part (a).						
 (a) eg Accep Sophie' In gene Sophie' (b) eg Do no Sophie' 	ot s average waiting time is more ral her time is more s waiting time is more overall ot accept s mean waiting time is more	understanding that mean is an average					
deviation is (a) eg Accep • The spr • Sophie' • Her wa (b) eg Do no • Sophie' • The rar • On aver	s a measure of spread. ot read of Sophie's times is less s times are more consistent iting is less varied	ust show an understanding that standa	ard				
	must refer to Sophie/Jack or she/h accept "on average the waiting time						
5. Accept stat	ements using 'waiting time', 'call t	ime', 'time' or 'waiting'.					
Commonly Ob	served Responses:						

Que	stion		Generic Scheme	Illustrative Scheme	Max Mark
7.			Ans: 5300 cubic centimetres		5
			 ¹ know to find difference in two volumes 	 ¹ evidence of difference in two volumes 	
			• ² substitute correctly into formula for volume of large cone	• ² $\frac{1}{3} \times \pi \times 16^2 \times 24 \ (= 6433 \cdot 98)$	
			• ³ substitute correctly into formula for volume of small cone	• ³ $\frac{1}{3} \times \pi \times 9^2 \times 13.5$ (=1145.11)	
			 ⁴ carry out all calculations correctly (must involve difference or sum of two volume calculations and include a fraction) 	• ⁴ 5288·87	
			 ⁵ round final answer to 2 significant figures and state correct units 	• ⁵ 5300 cm ³	
2. A	ccept	t vari	wer without working award 0/5. ations in π .		
	5		5	$430 \cdot 72 - 1144 \cdot 53 = 5286 \cdot 19 = 5300 \mathrm{cm}^3$	
	n awa a) Int	~	g •° diate calculations need not be show	vn	
	eg	$\frac{1}{2} \times 2$	$\pi \times 16^2 \times 24 - \frac{1}{3} \times \pi \times 9^2 \times 13 \cdot 5 = 5300$	cm ³ award 5/5	
((b) Where intermediate calculations are shown, they must involve at least three significant figures				ficant
(eg $6433 \cdot 98 1145 \cdot 11 = 6400 - 1100 = 5300 \text{ cm}^3$ award $4/5 \checkmark \checkmark \checkmark \checkmark \checkmark$ (c) Where the volume of only one cone is calculated \bullet^5 is available				
(0	<i>`</i>		•		
(5	$\pi \times 16^2 \times 24 = 6400 \text{cm}^3$ award 2/5 5300 ml or 5.3 litres.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
(cpt			

Question	Generic Scheme	Illustrative Scheme	Max Mark
Commonly Ob	served Responses:		
Working must	be shown		
1. $\frac{1}{3} \times \pi \times 16^2 >$	$\times 24 + \frac{1}{3} \times \pi \times 9^2 \times 13 \cdot 5 = 7600 \mathrm{cm}^3$	award 4/5 ×√√√√	
2. $\frac{1}{3} \times \pi \times 32^2 \times$	$\times 24 - \frac{1}{3} \times \pi \times 18^2 \times 13 \cdot 5 = 21000 \mathrm{cm}^3$	award 4/5 √×√√√	
3. $\frac{1}{3} \times \pi \times 16^2$	$< 24 - \frac{1}{3} \times \pi \times 9^2 \times 10 \cdot 5 = 5500 \mathrm{cm}^3$	award 4/5 √√×√√	
4. $\frac{1}{3} \times \pi \times 16^2$	$<24+\frac{1}{3}\times\pi\times9^2\times10\cdot5=7300\mathrm{cm}^3$	award 3/5 ×√×√√	
5. $\frac{1}{3} \times \pi \times 16^2 >$	$<10.5 - \frac{1}{3} \times \pi \times 9^2 \times 13.5 = 1700 \mathrm{cm}^3$	award 4/5 √×√√√	
$6. \frac{1}{3} \times \pi \times 16^2 >$	$(10.5 + \frac{1}{3} \times \pi \times 9^2 \times 13.5 = 4000 \text{cm}^3)$	award 3/5 ××√√√	
7. $\pi \times 16^2 \times 24$	$-\pi \times 9^2 \times 13 \cdot 5 = 16000 \mathrm{cm}^3$	award 3/5 √×√×√	
8. $\frac{4}{3} \times \pi \times 16^3$	$-\frac{4}{3}\times\pi\times9^3=14000\mathrm{cm}^3$	award 3/5 √××√√	

Que	stion	Generic	Generic Scheme		Illustrative Scheme	
8.		Ans: 78°				3
		• ¹ correct subst rule	itution into sine	• $\frac{\sin x}{150} = \frac{\sin 66}{140}$ o	$r \frac{150}{\sin x} = \frac{140}{\sin 66}$	
		• ² re-arrange fo	ormula	$\bullet^2 \sin x = \frac{150\sin 6}{140}$	6	
		• ³ find x		• ³ $x = 78()$		
3. F 4. F 5. : 6.	eg sin x Prematu Prematu ± 0.028 75, 74.5 monly	penalise incorrect ro $x = \frac{150 \sin 66}{140} = 0.97$ ure rounding: rounder ure truncation: trunco (uses rad) award 2 72 (uses grad) award Observed Response s of premature rounc	8 $\rightarrow x = 77.9$ and the formula of t	ward 3/3 e to at least 2 decin t be to at least 3 de ust be shown) g must be shown)		
(a) Premature rounding: $\sin x = \frac{150 \sin 66}{140}$ $= 0.98 \rightarrow x = 78.5$ (b) Premature rounding: $\sin x = \frac{150 \sin 66}{140}$ $= \frac{150 \times 0.9}{140}$ $= 0.964 \rightarrow x = 74.6$ (c) Premature truncation: $\sin x = \frac{150 \sin 66}{140} (= 0.978)$ $= 0.977 \rightarrow x = 75.9$						978)
	aw	vard 3/3	award 2/		award 2/3 √√×	
			I	I		

Que	Question		Generic Scheme		Illustrative Scheme	Max Mark
9.			Ans: ($(x+4)^2-23$		2
			• ¹ corre	ect bracket with square	• ¹ $(x+4)^2$	
			• ² comp	olete process	• $(x+4)^2 - 23$	
Note 1. (-	ct ans	wer with	nout working award 2/2		
		-	erved R cessary:	lesponses:		
1. A	ward	2/2	for	(a) $(x+4)^2 + (-23)$ or (. (b) $(x+4)(x+4)-23$	$(x+4)^2 + -23$	
2. A ¹	ward	1/2 ×	√ for	(a) $(x+4)-23$ (b) $(x^2+4)-23$ (c) $(x^2+4)^2-23$ (d) $(x+4x)^2-23$ (e) $(x+8)^2-71$		
3. A	ward	0/2	for	eg $(x+8)^2 - 23$		

Que	stion	Generic Scheme	Illustrative Scheme	Max Mark				
10.		Ans: $\frac{1}{n^4}$		3				
		Method 1 • ¹ simplify $(n^2)^3$	• n^6					
		• ² simplify $n^6 \times n^{-10}$	• n^{-4}					
		• ³ express with a positive power	• ³ $\frac{1}{n^4}$					
		Method 2 • ¹ simplify $(n^2)^3$	• n^6					
		• ² express with a positive power	• $^{2}\frac{1}{n^{10}}$					
		• ³ simplify $n^6 \times \frac{1}{n^{10}}$	• ³ $\frac{1}{n^4}$					
	Notes: 1. Correct answer without working award 3/3							
Com	monly C	bserved Responses:						

Qu	Question		Generic Scheme	Illustrative Scheme	Max Mark
11.			Ans: £4·95		
			Method 1		
			• ¹ linear scale factor	• $^{1}\frac{60}{100}$	
			• ² know to multiply cost by the square of the linear scale factor	$\bullet^2 13.75 \times \left(\frac{60}{100}\right)^2$	
			• ³ find cost of smaller picture (calculation must involve a power of the scale factor)	• ³ (£)4·95	
			Method 2 • ¹ linear scale factor	• $\frac{100}{60}$	
			• ² know to divide cost by the square of the linear scale factor	$\bullet^2 13.75 \div \left(\frac{100}{60}\right)^2$	
			 ³ find cost of smaller picture (calculation must involve a power of the scale factor) 	• ³ (£)4·95	
	tes:		······································		
1. 2. 3.	Disre	gard i	swer without working award 3/3 incorrect units or omission of units ist be rounded to nearest penny if r	auired	
			served Responses:	cyan ca.	
1.	13.75>	$\frac{60}{100}$	= 8 · 25 award	1/3 √××	
2.	13.75>	$\times \left(\frac{60}{100}\right)$	$\left(\frac{1}{2}\right)^3 = 2.97$ award	2/3 √×√	
3.	(13.75	$\left(\frac{1}{2}\right)^2 \times \frac{1}{1}$	$\frac{60}{00} = 113.44$ award	1/3 √××	
4.	13.75>	$\left(\frac{100}{60}\right)$	$\left(\frac{1}{2}\right)^2 = 38.19$ award	2/3 √×√	
5.	13.75-	$\div \left(\frac{100}{60}\right)$	$\left(\frac{0}{0}\right)^2 = 13.75 \div 1.67^2 = 4.93$ award 2	2/3 √√×	
			rounding leads to inaccurate answe		
6.	13·75>	$\times \left(\frac{100}{60}\right)$	$\left(\frac{1}{2}\right)^2 = 13.75 \times 1.67^2 = 38.35$ award	1/3 √××	
	(Prema	ature	rounding leads to inaccurate answe	r)	

Que	stion	Generic Scheme	Illustrative Scheme	Max Mark
12.		Ans: $k = \frac{L^2 + p}{4t}$		3
		• ¹ square	• ¹ $L^2 = 4kt - p$	
		• ² add p	• ² $4kt = L^2 + p$	
		• ³ divide by $4t$	$\bullet^3 \ k = \frac{L^2 + p}{4t}$	

- 1. Correct answer without working award 3/3.
- 2. Final answer should be in simplest form

(a)
$$\frac{1}{4} \left(\frac{L^2 + p}{t} \right)$$
 award 3/3
(b) $\frac{\left(\frac{L^2 + p}{t} \right)}{4}$ award 2/3 $\checkmark \checkmark \times$

3. For subsequent incorrect working, \bullet^3 is not available.

✓

Commonly Observed Responses:

1. For the response below award 1/3

• add p $L+p = \sqrt{4kt} \times \frac{L+p}{4t} = \sqrt{k} \times \frac{L+p}{4t} = \sqrt{k}$

• square
$$k = \left(\frac{L+p}{4t}\right)^2$$

Que	stion		Generic Scheme	Illustrative Scheme	Max Mark
13.			Ans: $\frac{8x-7}{(x-2)(x+1)}$		3
			• ¹ correct denominator	• $(x-2)(x+1)$	
			• ² correct numerator	• ² 3(x+1)+5(x-2)	
			• ³ remove brackets and collect like terms in numerator	• ³ $\frac{8x-7}{(x-2)(x+1)}$	
2. A 3. D 4. V a	correc ccept o not xpan: Vhere vailal g (t $\frac{3}{(x-x)}$ t accession as a called a called for (a) $\frac{1}{(x-x)}$ (a) $\frac{1}{(x-x)}$	wer without working award 3/3. $\frac{3(x+1)}{(-2)(x+1)} + \frac{5(x-2)}{(x-2)(x+1)}$ for the award 3/3. Equation (2) (x+1) + $\frac{5(x-2)}{(x-2)(x+1)}$ for the award of the set of the final answer. Indidate chooses to expand the brack of a correct expansion. $\frac{3(x+1)}{(x-2)(x+1)} + \frac{5(x-2)}{(x-2)(x+1)} = \frac{8x-7}{x^2-x-7}$ $\frac{3(x+1)}{(x-2)(x+1)} + \frac{5(x-2)}{(x-2)(x+1)} = \frac{8x-7}{x^2-2}$	e award of \bullet^1 unless the correct sets in the denominator, then \bullet^1 is on $\frac{1}{-2}$ award 3/3	ly
	-	-	served Responses: $\frac{5x-2}{1} + \frac{5x-2}{(x-2)(x+1)} = \frac{8x-1}{(x-2)(x+1)}$	award 1/3 √××	

Question		Generic Scheme	Illustrative Scheme	Max Mark	
14.		Ans: x = 102·5, 282·5		3	
		• ¹ rearrange equation	• ¹ $\tan x = -\frac{9}{2}$		
		• ² find one value of x	• 2 x = 102.5		
		• ³ find another value of x	• $x = 282.5$		
 For For 	x = 178 x = 93.9	wer without working award 2/3 6, 358·6 (uses RAD), award 3/3 (wit 9, 273·9 (uses GRAD), award 3/3 (wit alise omission of degree signs throug	th working), 2/3 (without working)		
Comm	only Ob	served Responses:			
1. lf t	$an x^{\circ} < 0$) then award \bullet^2 and \bullet^3 for correct 2	nd and 4 th quadrant angles		
eg	$\tan x = -$	$-\frac{9}{2} \rightarrow$ (a) $x = 77 \cdot 5, 102 \cdot 5$ award	2/3 √×√		
		(b) $x = 77.5, 282.5$ award			
		(c) $x = 77 \cdot 5, 257 \cdot 5$ award	1/3 √××		
2. If ta	an x > 0 t	hen •² is not available (working eas	ed) but award • ³ for correct 3 rd quadr	ant	
angl	le e	$eg \tan x^{\circ} = \frac{9}{2} \rightarrow (a) \ x = 77.5,\ 257.5$	5 award 1/3 ××√		
		(b) $x = 77.5, 102.1$			
		(c) $x = 77 \cdot 5, 282 \cdot$	5 award 0/3		
	((d) $\tan x^{\circ} = \frac{1}{2} \rightarrow x = 26 \cdot 6,206 \cdot 6$	award 1/3 ××√		
(a)	<i>x</i> = 257	$\rightarrow x = -77 \cdot 5$ $\cdot 5 \left[180 - (-77 \cdot 5) \right], 437 \cdot 5 \left[360 - (-77 \cdot 5) \right]$ ct application of CAST diagram and	· /]		

Question	Generic Scheme	Illustrative Scheme	
15.	 Ans: 11·4 (cm) ¹ marshal facts and recognise right-angled triangle 	• ¹ 6·6 cm 4·5 cm	4
	 ² correct Pythagoras statement ³ correct calculation of x ⁴ find height of label 	• $x^{2} = 6 \cdot 6^{2} - 4 \cdot 5^{2}$ • $4 \cdot 8 \dots$ • $4 \cdot 11 \cdot 4 \dots \text{ (cm)}$	

- 1. For correct answer without working award 0/42. •⁴ is for adding 6.6 to a previously calculated value
- 3. In the absence of a diagram accept $x^2 = 6 \cdot 6^2 4 \cdot 5^2$ as evidence for the award of \bullet^1 and \bullet^2 . 4. Where a candidate assumes an angle of 45° in the right-angled triangle, only \bullet^1 and \bullet^4 are available.

- 1. For $x^2 = 6 \cdot 6^2 + 4 \cdot 5^2 \rightarrow x = 7 \cdot 988... \rightarrow \text{height} = 14 \cdot 588...$
 - (a) with correct diagram award 3/4 $\checkmark \times \checkmark \checkmark$ (b) without a diagram award 2/4 ××√√

Question	Generic Scheme	Illustrative Scheme	Max Mark
16.	 Ans: 6.8 cm ¹ identify cos A or angle A ² substitute into cosine rule (cos A or angle A must have been found using trigonometry) ³ calculate BC² ⁴ calculate BC correct to one decimal place 	• $^{1} \cos A = \frac{3}{4} \text{ or } A = 41 \cdot 4$ • $^{2} BC^{2} = 6^{2} + 10^{2} - 2 \times 6 \times 10 \times \frac{3}{4}$ or $BC^{2} = 6^{2} + 10^{2} - 2 \times 6 \times 10 \times \cos 41 \cdot 4$ • $^{3} BC = 46$ • $^{4} BC = 6 \cdot 8 \text{ (cm)}$	4

- 1. Correct answer without working award 0/4
- 2. Do not accept the substitution of a length or the value of sin A or tan A in place of angle A in the cosine rule.
- 3. \bullet^3 and \bullet^4 are only available for calculations within a valid strategy
- 4. Alternative valid strategies:

[END OF MARKING INSTRUCTIONS]