

2018 Mathematics

National 5 - Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded. $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 or 3

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0 \cdot 3} \text{ must be simplified to } 50 \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$

-2x + 3x + 6x + 7x +

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
1.		• ¹ identify common denominator	• ¹ 2 ${15} + {15}$ or ${15} + {15}$	2		
		• ² answer	• ² $3\frac{2}{15}$ or $\frac{47}{15}$			
1	Notes: 1. Correct answer without working award 0/2 2. Do not penalise incorrect conversion of $\frac{47}{15}$ to a mixed number					
Com	Commonly Observed Responses:					

Question		on	Generic scheme	Illustrative scheme	Max mark	
2.			• ¹ start expansion	• $3x^2 - 3x + x - 1$ or $2x^2 - 10$	3	
			• ² complete expansion	• ² $3x^2 - 3x + x - 1 + 2x^2 - 10$		
			• ³ collect like terms (see Note 2)	• $5x^2 - 2x - 11$		
Note 1.	otes: 1. Correct answer without working award 3/3					
2.	2. Terms in the expression to be simplified must include a constant and two different powers of x eg (a) $3x^3 - 3x + x - 1 + 2x^2 - 10 = 3x^3 + 2x^2 - 2x - 11$ award $2/3 \checkmark x \checkmark$ (b) $3(x-1) + 1(x-1) + 2(x^2-5) = 3x - 3 + x - 1 + 2x^2 - 10 = 2x^2 + 4x - 14$ award $2/3 \checkmark x \checkmark$ (c) $3x^2 + 1 - 1 + 2x^2 - 10 = 5x^2 - 10$ award $1/3 \checkmark x \times$					
3.	For	subse	equent incorrect working, the final mar	k is not available		
Comi	monly	' Obse	erved Responses:			

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
3.		•1 evidence of scaling (match x or y coefficients)	• 1 eg $\frac{8x + 10y = -6}{30x - 10y = 25}$	3			
		• ² follow a valid strategy through to produce values for x and y	• ² values for x and y				
		• ³ calculate correct values for x and y	• $x = 0.5, y = -1$				
1	Notes: 1. Correct answer without working award 0/3 2. Answer obtained by guess and check award 0/3						
Com	Commonly Observed Responses:						

Q	uestion	Generic scheme	Illustrative scheme	Max mark
4.		• ¹ evidence of subtraction	$\bullet^{1} \operatorname{eg} \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	2
		• ² all components correct	$\bullet^2 \begin{pmatrix} 5\\ -9\\ 2 \end{pmatrix}$	
Note 1.		nswer without working award 2/2		
2.	(a) brack	mum mark available is 1/2 where ets are omitted from the final answer answer is given in coordinate form		
2	(F)	The correct component for evidence of s r $\begin{pmatrix} -9 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ award 1/2 \checkmark ×	subtraction	
Com	monly Obse	erved Responses:		
1.	(a) $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	$+\begin{pmatrix}5\\-9\\2\end{pmatrix}=\begin{pmatrix}6\\-4\\3\end{pmatrix}$	award 2/2	
	(b) $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	$+\begin{pmatrix}5\\-9\\2\end{pmatrix}=\begin{pmatrix}6\\-4\\3\end{pmatrix} \rightarrow \mathbf{v}=\begin{pmatrix}6\\-4\\3\end{pmatrix}$	award 1/2	
2.	(-5 9 -2)	$\begin{bmatrix} u - (u + v) \end{bmatrix}$ no working necessary	award 1/2 ×√	
3.	$\begin{pmatrix} 7\\1\\4 \end{pmatrix}$	$\left[u + (u + v) ight]$ no working necessary	award 1/2 ×√	
4.	(5,-9	,2) or 5,-9,2	award 1/2 √×	

Q	uestion	Generic scheme	Illustrative scheme	Max mark	
5.		• ¹ correct factorisation	• $^{1}(x-3)(x-8)$	2	
		• ² solve for x	• $(x-3)(x-8)$ • $(x=)3, (x=)8$		
Note 1.		nswer without working award 0/2			
2.	. For an an	swer obtained by guess and check awa	rd 0/2		
 3. BEWARE ² is only available if 3,8 are clearly stated as solutions to (x-3)(x-8)[=0] and not as factors of 24 4. Where quadratic formula is used award marks as follows ¹ 11±√25/2 ² 3,8 					
	•	erved Responses: $8) \rightarrow 3,8$ award 0/2			
		$-6) \rightarrow -4,6$ award $1/2 \times $			

6. • ¹ state the value of a • ² state the value of b Notes: Commonly Observed Responses: 1. (a) $y = 5\cos 4x$ award 2/2 (b) 5,4 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2 ••••••••••••••••••••••••••••••••••••	Max mark	Illustrative scheme	Generic scheme	Question	
Notes: award 2/2 1. (a) $y = 5\cos 4x$ award 2/2 (b) 5,4 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2	2	• ¹ <i>a</i> = 5	• ¹ state the value of a		6.
Commonly Observed Responses: award 2/2 1. (a) $y = 5\cos 4x$ award 2/2 (b) 5,4 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2		$\bullet^2 b = 4$	• ² state the value of <i>b</i>		
1. (a) $y = 5\cos 4x$ award 2/2 (b) 5,4 award 2/2 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 1/2 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2				s:	Notes
1. (a) $y = 5\cos 4x$ award 2/2 (b) 5,4 award 2/2 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 1/2 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2					
1. (a) $y = 5\cos 4x$ award 2/2 (b) 5,4 award 2/2 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 1/2 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2			erved Responses:	monly Obse	Comr
(b) 5,4 award 1/2 2. (a) $a = 4, b = 5$ or $y = 4\cos 5x$ award 1/2 (b) 4,5 award 0/2 3. (a) $y = 5\cos 2x$ award 1/2			-	-	
(b) 4,5 award $0/2$ 3. (a) $y = 5\cos 2x$ award $1/2$				-	
3. (a) $y = 5\cos 2x$ award 1/2			$b = 5$ or $y = 4\cos 5x$ award 1/2	(a) <i>a</i> = 4,	2.
			award 0/2	(b) 4,5	
			$\cos 2x$ award 1/2	(a) $y = 5c$	3.
(b) 5,2 award 0/2			award 0/2	(b) 5,2	

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
7.	(a)		Method 1: $y-b=m(x-a)$	Method 1	3
			•1 calculate gradient	• $\frac{6}{4}$ or equivalent	
			• ² substitute gradient and a point into $y-b=m(x-a)$	• ² eg $y-20 = \frac{6}{4}(x-12)$	
			• ³ state equation in simplest form in terms of P and d	• ³ $P = \frac{3}{2}d + 2$ or equivalent	
			Method 2: $y = mx + c$	Method 2	
			• ¹ calculate gradient	• $\frac{6}{4}$ or equivalent	
			• ² substitute gradient and a point into $y = mx + c$	• 2 eg $20 = \frac{6}{4} \times 12 + c$	
			• ³ state equation in simplest form in terms of P and d	• ³ $P = \frac{3}{2}d + 2$ or equivalent	

Question	Generic scheme	Illustrative scheme	Max mark				
Notes: 1. Correct a	nswer without working award 0/3						
2. Gradient	need not be simplified for the award of	• ²					
3. Where $\frac{6}{4}$	3. Where $\frac{6}{4}$ is simplified incorrectly \bullet^2 is still available						
eg m=	$=\frac{6}{4}=\frac{2}{3} \rightarrow y-20=\frac{2}{3}(x-12) \rightarrow P=\frac{2}{3}d$	+12 award 2/3 √√×					
4. • ³ is not a	available where the calculated gradient	is an integer					
5. • ³ is not a	available where a decimal approximati	on is used for the gradient					
eg m=	$=\frac{4}{6}=0.67 \rightarrow y-20=0.67(x-12) \rightarrow P$	$= 0.67d + 11.96$ award $1/3 \times 1.5$					
	available for invalid subsequent working	5					
eg P=	$=\frac{3}{2}d+2 \rightarrow 2P=3d+2$	award 2/3 √√×					
Commonly Obse Working must b	erved Responses:						
1. $y = \frac{3}{2}x + $		award 2/3 √√×					
2. (a) $P = \frac{3}{2}$	$d + 2 \rightarrow 2P = 3d + 4$	award 3/3					
(b) $P = \frac{6}{4}$	$d + 2 \rightarrow 4P = 6d + 8$	award 2/3 √√×					
3. $m = \frac{6}{4} = 0$	$0.67 \rightarrow y - 20 = 0.67(x - 12) \rightarrow P = 0.67$	$d + 11.96$ award $2/3 \checkmark \checkmark \times$					
4. $m = \frac{6}{4} = \frac{3}{4}$	$\frac{3}{4} = 0.75 \rightarrow y - 20 = 0.75(x - 12) \rightarrow P = 0$	$0.75d + 11$ award $2/3 \checkmark \checkmark \times$					
5. $m = \frac{4}{6} = \frac{2}{3}$	$\frac{2}{3} \to y - 20 = \frac{2}{3}(x - 12) \to P = \frac{2}{3}d + 12$	award 2/3 ×√√					
6. $m = \frac{3}{4} = 0$	$0.75 \rightarrow y - 20 = 0.75(x - 12) \rightarrow P = 0.75$	$d+11$ award 2/3 × \checkmark \checkmark					

Q	Question		Generic scheme	Illustrative scheme	Max mark	
	(b)		•1 calculate cost	• ¹ (£) 9.50	1	
Notes: 1. Correct answer without working award 1/1 2. Do not penalise omission of £						
	3. Do not accept 9.5 or $\frac{19}{2}$					
4.	4. Follow through mark from part (a) is only available if 5 is multiplied or divided by a non-unitary fraction (or decimal equivalent) followed by an addition or subtraction					
Com	Commonly Observed Responses:					

Question		ı	Generic scheme	Illustrative scheme	Max mark	
8.			•1 find discriminant	•1 –24	2	
			• ² state nature of roots	• ² no real roots		
-	Notes: 1. Correct answer without working award 0/2					
2.	. 16-40	0 < 0	ightarrow no real roots, award 2/2			
3.	3. Do not accept 'no roots', 'no real (or) distinct roots', 'no real (and) distinct roots'					
 4. Expected answer(s) for the award of •², when (a) b² - 4ac > 0: 'two real (and) distinct roots' (b) b² - 4ac = 0: 'one repeated real root' or 'two equal real roots' 						
1. —	$\frac{4\pm\sqrt{16}}{4}$	-40	Prved Responses: $= \frac{-4 \pm \sqrt{-24}}{4} \text{award } 1/2 \checkmark \times$ $= \frac{-24}{4} \text{award } 1/2 \checkmark \times$			

Q	Question		Generic scheme	Illustrative scheme	Max mark	
9.			• ¹ calculate the size of an interior angle of the decagon or angle JKL	• ¹ interior angle = 72+72 or JKL = 36	2	
			• ² calculate the size of angle KJL	• ² 127		
Notes: 1. Correct answer without working award 2/2						
2.	2. Degree signs are not required					

- 3. Full marks may be awarded for information marked on the diagram
- 4. For a final answer of 36 which is not named or shown at JKL award 0/2
- 5. Where JKL has been calculated incorrectly •² is only available where there is **clear evidence** that JKL has been calculated by using the interior angle or exterior angle of the decagon

Commonly Observed Responses:

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
10.		• ¹ correct substitution into cosine rule	• 1 10 2 + 8 2 - 2×10×8× $\frac{1}{8}$	3		
		• ² calculate XY ²	• ² 144			
		• ³ calculate XY	• ³ 12 (cm)			
1. 2.	Notes:• 3 calculate XY• 3 12 (cm)1. Correct answer without working award 0/32. For $10^{2} + 8^{2} - 2 \times 10 \times 8 \times \cos \frac{1}{8} = 164 - 160 \times \cos \frac{1}{8} = 144 \rightarrow 12$ where cos is scored out in each line of working award 3/33. • 3 is available for (a) expressing \sqrt{x} as a surd in its simplest form $eg \sqrt{10^{2} + 8^{2}} = \sqrt{164} = 2\sqrt{41}$ award $1/3 \times \times \checkmark$ [• 3 is not available where \sqrt{x} cannot be simplified] (b) calculating \sqrt{x} where x is a perfect square greater than 100 $eg \sqrt{10^{2} - 8^{2}} = \sqrt{36} = 6$ award $0/3$					
1.	$10^2 + 8^2 - 2$	erved Responses: $2 \times 10 \times 8 \times \cos \frac{1}{8} = 12$ award 2/3 $2 \times 10 \times 8 \times \cos \frac{1}{8}$ award 0/3	×√√			

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark	
11.			 ¹ express as equivalent fraction with rational denominator 	• $1 \frac{9\sqrt{6}}{6}$	2	
			• ² express in simplest form	$\bullet^2 \frac{3\sqrt{6}}{2}$		
Note	-	ect an	swer without working award 0/2			
2. Accept 1.5√6						
3. For subsequent incorrect working, the final mark is not available						

eg
$$\frac{9\sqrt{6}}{6} = \frac{3\sqrt{6}}{2} = 3\sqrt{3}$$
 award $1/2 \checkmark \times$

Commonly Observed Responses:

Question		า	Generic scheme	Illustrative scheme	Max mark			
12.			•1 state value	• ¹ -0·5	1			
Note	Notes:							
Com	Commonly Observed Responses:							

Q	uestion	Generic scheme	Illustrative scheme	Max mark
13.		• ¹ state coordinates of B	• ¹ (4, 8, 5) • ² (6, 8, 0)	2
		• ² state coordinates of C	• ² (6, 8, 0)	
	The maxin (a) bracke (b) answer	num mark available is 1/2 where ts are omitted (unless already penalis rs are given in component form (unles	- /	
2.	· · · ·	8, 5) and (6, 8, 0) award 2/2 4, 8, 5) and B(6, 8, 0) award 1/2		
4.	• ² is availa eg (2, 8, 5	4, 8) and (0, 6, 8) [repeated error] aw ble for answers of the form $B(x, y, z)$ b) and (4, 8, 0) erved Responses:		
1.	4,8,5 and (award 2	l 6,8,0 award 1/2 × /2 if omission of brackets has already b		
2.		$ \begin{bmatrix} 6 \\ 8 \\ 0 \end{bmatrix} $ or 8 and 8 award 1/2 × 0 7 if use of coordinates instead of complete the second secon		Q4)
3.	$\begin{pmatrix} 5\\8\\4 \end{pmatrix}$ and	$ \begin{bmatrix} 6\\ 8\\ 0 \end{bmatrix} award 0/2 $		

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
14.		• ¹ subtract <i>h</i>	• ¹ $y-h=g\sqrt{x}$	3		
		• ² divide by g	• ¹ $y-h = g\sqrt{x}$ • ² $\sqrt{x} = \frac{y-h}{g}$			
		• ³ square	• ³ $x = \left(\frac{y-h}{g}\right)^2$			
Note 1.		swer without working award 1/3				
2.	For subseq	uent incorrect working, the final mark	is not available			
	Commonly Observed Responses: Working must be shown.					
1.	1. $x = \left(\frac{y}{g} - \frac{h}{g}\right)^2$ award 3/3					
2.	2. $x = \frac{y-h}{g}^2$ award 2/3 $\checkmark \checkmark \times$					

Q	Question		Generic scheme	Illustrative scheme	Max mark		
15.			•1 start process	• $\frac{4}{9}$ or p^{8}	2		
			• ² complete process	$e^{2} \frac{4}{9} p^{8}$			
Note 1.	-	corre	ect answer without working award 2/2				
2.	. For s	ubseq	uent incorrect working, the final mark	is not available			
3.	. BEW	ARE :	For $\frac{2}{3}p^4 + \frac{2}{3}p^4 = \frac{4}{3}p^8$ award 0/2				
4.	. Awar	d ∙¹ f	or an incorrect expansion leading to $\frac{4}{9}$	+ or + p^{8}			
	$\operatorname{eg}\left(\frac{2}{3}p^{4}\right)\left(\frac{2}{3}p^{4}\right) = \frac{4}{9} + \frac{2}{3}p^{4} + \frac{2}{3}p^{4} + p^{8} = \frac{4}{9} + \frac{4}{3}p^{4} + p^{8} \text{award } 1/2 \checkmark \times$						
Com	Commonly Observed Responses:						

Question		Generic scheme	Illustrative scheme	Max mark
16.		• ¹ identify roots	• ¹ -4 AND 6	3
		• ² identify turning point OR <i>y</i> -intercept	• ² (1, -25) OR -24	
		• ³ identify the turning point AND the y-intercept and sketch a consistently annotated parabola	• ³ (1, –25) AND –24 and consistently annotated parabola (see Note 1).	
			-4 0 6 x -24 (1,-25)	
Note 1.	\bullet^3 is only a	vailable where the roots, turning point y annotated on the sketch	AND <i>y</i> -intercept are clearly marked a	and
2.		rectly calculated roots and/or y-interce evidence for the award of \bullet^3 (treat as		
3.		ailable if graph is not a parabola -6and4 \rightarrow (-1,-21) or -24 award 1/	/3 ×√×	
Com	monly Obse	erved Responses:		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
17.		Method 1	Method 1	3
		• ¹ start substitution into formula	• $\frac{1}{3} \times 6^2 \times h$ or $\frac{1}{3}Ah = 138$	
		• ² complete substitution into formula	$\bullet^2 \frac{1}{3} \times 6^2 \times h = 138$	
		• ³ calculate height	• ³ 11·5 (cm)	
		Method 2	Method 2	
		• ¹ change subject to h	• ¹ $\frac{3V}{A}$ or $\frac{V}{\frac{1}{3}A}$	
		• ² correct substitution into formula	• ² $\frac{3 \times 138}{6 \times 6}$ or $\frac{138}{\frac{1}{3} \times 6 \times 6}$	
		• ³ calculate height	• ³ 11·5 (cm)	

Question	Generic scheme		Illustrative scheme	Max mark
Notes: 1. For a corre	ect answer without working award (0/3		
2. For an ans	wer obtained by guess and check a	ward 0/3		
3. Accept $\frac{23}{2}$	$\frac{3}{2}$ or $11\frac{1}{2}$			
4. For subseq eg $\frac{23}{2} = 11$	uent incorrect working, the final m	nark is not av	vailable	
5. Calculation	n must involve division by a numbe	r greater tha	an 10 for the award of \bullet^3	
Commonly Obse Working must b	erved Responses: e shown.			
1. (a) $\frac{1}{3} \times 6^2 \times$	$h = 138 \rightarrow \frac{1}{3} \times 12 \times h = 138 \rightarrow 4h = 1$	$38 \rightarrow h = 34$	award $2/3 \sqrt{x}$	
(b) $\frac{1}{3} \times 12 \times$	$h = 138 \rightarrow 4h = 138 \rightarrow h = 34.5$		award 1/3 √××	
2. $\frac{1}{3} \times 18 \times$	$h = 138 \rightarrow 6h = 138 \rightarrow h = 23$	$[A = \frac{1}{2} \times 6^2]$	award 1/3 √××	
3. $\frac{1}{3} \times 24 \times$	$h = 138 \rightarrow 8h = 138 \rightarrow h = 17.25$	[<i>A</i> = 4×6]	award 1/3 √××	
4. (a) $V = \frac{1}{3}A$	$Ah \rightarrow \frac{1}{3} \times 6 \times h = 138 \rightarrow 2h = 138 \rightarrow h$	h = 69	award 1/3 √××	
(b) $h = \frac{3V}{A}$	$h \to h = \frac{3 \times 138}{6} \to h = 69$		award 1/3 √××	
(c) $\frac{1}{3} \times 6 \times 1$	$h = 138 \rightarrow 2h = 138 \rightarrow h = 69$		award 0/3	

Q	uestio	n	Gene	ric scheme		Illustrative scheme	Max mark
18.			• ¹ correct subst	itution for $\tan x$		• $\sin x \cos x \frac{\sin x}{\cos x}$	2
			• ² express in sir	nplest form		• ² $\sin^2 x$	
Note							
1.	For si	$\sin^2 x$	without working	award 0/2			
2.	Degre	e sig	ns are not require	ed			
3.	Accep	ot (si	$(x, x)^2$ but not sin	x^2			
4.	● ¹ is r	not av	vailable if there a	are no variables			
	eg sir	$1\cos^{\frac{1}{2}}$	$\frac{\sin}{\cos} = \sin^2$		awa	ard 1/2 ×√	
5.	∙ ¹ is r	not av	vailable if candid	ate simply states	s tan:	$x = \frac{\sin x}{\cos x}$ then proceeds no further	
6.	•² is r	not av	vailable if there i	is invalid subsequ	uent v	vorking	
			$x\cos x \frac{\sin x}{\cos x} = \sin x$			ard 1/2 ✓×	
	(b)	sin	$x\cos x \frac{\sin x}{\cos x} = \sin x$	$x^2 x = 1 - \cos^2 x$	awa	ard 2/2	
7.	Alterr	native	e acceptable stra	tegy:			
	• 1 $\left(\frac{o}{h}\right)$	$\left(\frac{a}{h}\right) \left(\frac{a}{h}\right)$	$\left(\frac{o}{a}\right)$				
	• ² $\frac{o^2}{h^2}$	- = sir	$n^2 x$		awa	ard 2/2	
Com	monly	Obse	rved Responses:	:			
1.	$\sin x$		$\frac{\sin x}{\cos x} = \sin x^2$	award 1/2 √×			
2.	$1 \times \frac{\sin}{\cos}$	$\frac{\ln x}{\log x} =$	tan x	award 1/2 √×			
3.	$\sin x$	$\cos x - \frac{6}{3}$	$\frac{\cos x}{\sin x} = \cos^2 x$	award 1/2 ×√			

Q	Question		Generic scheme	Illustrative scheme	Max mark
19.	(a)	(i)	• ¹ correct bracket with square	• ¹ $(x-3)^2$	2
			• ² complete process	• ² $(x-3)^2 - 90$	
	. Corı		nswer without working award 2/2 Ition to (a)(i) only appears in (a)(ii) th	en both marks are available	
	-		erved Responses: essary:		
		-	for (a) $(x-3)^2 + (-90)$ or $(x-3)$ (b) $(x-3)(x-3) - 90$) ² +-90	
2.	Awar	[.] d 1/2	×√ for (a) $(x-3)-90$ (b) $(x^2-3)-90$ (c) $(x^2-3)^2-90$ (d) $(x-3x)^2-90$ (e) $(x-6)^2-117$		
3.			² -117 award 1/2 ×√ ² -90 award 0/2		
		(ii)	• ¹ state equation of axis of symmetry	\bullet^1 $x=3$	1
	. For		axis of symmetry = 3 award 0/1)(i) [unless no answer given to 19(a)(i)]	
Com	monly	v Obse	erved Responses:		

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark		
19.	(b)		Ans: $d = 3, e = 10$		4		
			Method 1	Method 1			
			 ¹ equate complete square form to zero 	• $(x-3)^2 - 90 = 0$			
			• ² start to solve	• ² $x-3 = \pm \sqrt{90}$ • ³ $x = 3 \pm \sqrt{90}$			
			• ³ solve equation	$\bullet^3 \ x = 3 \pm \sqrt{90}$			
			• ⁴ complete process	• ⁴ $d = 3, e = 10$ or $3 \pm 3\sqrt{10}$			
			Method 2	Method 2			
			• ¹ correct substitution into quadratic formula	$\bullet^{1} \frac{6 \pm \sqrt{\left(-6\right)^{2} - 4 \times 1 \times \left(-81\right)}}{2 \times 1}$			
			• ² evaluate discriminant	• ² 360 (stated or implied by • ³)			
			• ³ express discriminant in simplest form	• ³ 6√10			
			• ⁴ complete process	• ⁴ $d = 3, e = 10 \text{ or } 3 \pm 3\sqrt{10}$			
Note		oct an	swer without working award $0/4$				
	1. Correct answer without working award 0/4						
	2. Where a, b and c are all positive \bullet^2 is not available						
3.	3. Where $b^2 - 4ac$ is calculated incorrectly, \bullet^3 and \bullet^4 are only available if $b^2 - 4ac > 0$ (See CORs 2 - 5)						
4.	4. • ⁴ is only available where a correct simplification of $\sqrt{\text{discriminant}}$ leads to a final answer of the form $d \pm d\sqrt{e}$ (See COR 6)						

Commonly Observed Responses: Working must be shown.

1.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{360}}{2} \rightarrow \frac{6 \pm 3\sqrt{40}}{2} \rightarrow 3 \pm 1.5\sqrt{40} \qquad \text{award } 2/4 \checkmark \checkmark \times 10^{-10}$$

2.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{-288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \quad \sqrt{\times \times \times}$$

(**BEWARE:** candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

3.
$$\frac{6\pm\sqrt{\left(-6\right)^2-4\times1\times\left(-81\right)}}{2\times1} \rightarrow \frac{6\pm\sqrt{288}}{2} \rightarrow \frac{6\pm12\sqrt{2}}{2} \rightarrow 3\pm6\sqrt{2} \qquad \text{award } 2/4 \checkmark \times \checkmark \times$$

4.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{-288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \times \sqrt{\times \times}$$
(BEWARE: candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

5.
$$\frac{-6 \pm \sqrt{6^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{-6 \pm \sqrt{-288}}{2} \rightarrow \frac{-6 \pm 12\sqrt{2}}{2} \rightarrow -3 \pm 6\sqrt{2}$$
 award 0/4

(**BEWARE:** candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

6.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \times x \sqrt{x}$$

7.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 6\sqrt{8}}{2} \rightarrow 3 \pm 3\sqrt{8} \qquad \text{award } 2/4 \checkmark \times \checkmark$$

8.
$$6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)} \rightarrow 6 \pm \sqrt{360} \rightarrow 6 \pm 6\sqrt{10} \qquad \text{award } 2/4 \times \checkmark \checkmark$$

[END OF MARKING INSTRUCTIONS]

2018 Mathematics

National 5 - Paper 2

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded. $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 or 3

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$\begin{array}{rcrcr}
\bullet^{5} & \bullet^{6} \\
\bullet^{5} & x = 2 & x = -4 \\
\bullet^{6} & y = 5 & y = -7
\end{array}$$
Horizontal: $\bullet^{5} x = 2$ and $x = -4$ Vertical: $\bullet^{5} x = 2$ and $y = 5$
 $\bullet^{6} y = 5$ and $y = -7$ $\bullet^{6} x = -4$ and $y = -7$

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0 \cdot 3} \text{ must be simplified to } 50 \qquad \qquad \frac{4/5}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Qu	estion	Generic scheme	Illustrative scheme	Max mark				
1.		• ¹ know how to decrease by 2%	$\bullet^1 \times 0.98$	3				
		• ² know how to calculate new total	• ² 125 000 \times 0.98 ³					
		• ³ carry out calculations correctly within a valid strategy	• ³ 117 649 (tonnes)					
	Correct a	answer without working award 3/3 n incorrect percentage is used, the work	king must be followed through to give t	he				
	possibilit	y of awarding 2/3, with working $00 \times 0.02^3 = 1$, with working award 2/3		-				
3.	(a) along	vision is used (with 0.98 , \bullet^1 is not available (5 000 ÷ $0.98^3 = 132810(.3)$ award 2/	′3 ×√√					
	(b) along	(b) along with an incorrect percentage, \bullet^1 and \bullet^2 are not available eg 125 000 \div 1.02 ³ =117790(.2) award 1/3 ××√						
	nonly Obse ing must b	erved Responses: e shown:						
	-	$\times 1.02^3 = 132651$	award 2/3 × $\checkmark \checkmark$					
2.	125 000	$\times 0.98 = 122500$	award 1/3 √××					
3.	125 000	\times 0.98 \times 3 = 367500	award 1/3 √××					
4.	125 000	$\times 0.02 = 2500 \rightarrow 125000 - 3 \times 2500 = 11^{\circ}$	7500 award 1/3 √××					
5.	125 000	$\times 0.02 \times 3 = 7500$	award 0/3					
5.	125 000	$\times 0.02 \times 3 = 7500$	award 0/3					

Q	uestion	Generic scheme	Illustrative scheme	Max mark
2.		Method 1 • ¹ appropriate fraction	Method 1 • $1 \frac{320}{360}$	3
		 ² correct substitution into arc length formula 	$\bullet^2 \frac{320}{360} \times 2 \times \pi \times 7 \cdot 4$	
		• ³ calculate arc length	• ³ 41(·32) (cm)	
		Method 2	Method 2	
		• ¹ appropriate fraction	• $1 \frac{360}{320}$	
		• ² correct substitution into arc length formula	• ² $2 \times \pi \times 7 \cdot 4 \div \frac{360}{320}$	
		• ³ calculate arc length	• ³ 41(·32) (cm)	
			· · · · · · · · · · · · · · · · · · ·	

Questi	ion	Generic scheme		III	ustrative scheme	Max mark	
Notes: 1. C							
	Do not penalise variations in π eg $\frac{320}{360} \times 2 \times 3 \cdot 14 \times 7 \cdot 4 = 41(\cdot 30)$ award 3/3						
	Premature rounding: rounded working must be to at least 2 significant figures eg (a) $\frac{320}{360} \times 2 \times \pi \times 7 \cdot 4 = 0.89 \times 2 \times \pi \times 7 \cdot 4 = 41(.38)$ award 3/3 (b) $\frac{320}{360} \times 2 \times \pi \times 7 \cdot 4 = 0.9 \times 2 \times \pi \times 7 \cdot 4 = 42$ or $41 \cdot 8(46)$ award 2/3 $\checkmark \checkmark \times$						
4. A	ccept 2	$2 \times \pi \times 7 \cdot 4 - \frac{40}{360} \times 2 \times \pi \times 7 \cdot 4$	= 41 or 41(∙	32)	award 3/3		
		equent incorrect working, th $\times 7 \cdot 4 - \frac{320}{360} \times 2 \times \pi \times 7 \cdot 4 = 5$ c		k is not ava	ilable award 2/3 √√×		
Common	•	rved Responses: e shown:					
-		$7 \cdot 4 = 21 \text{ or } 20 \cdot 6(64)$	award 2/3	√ ×√			
2. $\frac{32}{36}$	$\frac{20}{50} \times \pi \times$	$7 \cdot 4^2 = 153 \text{ or } 152 \cdot 9(18)$	award 2/3	√ ×√			
3. $\frac{4}{36}$	$\frac{0}{50} \times 2 \times \frac{1}{50}$	$\pi \times 7 \cdot 4 = 5(\cdot 16)$	award 2/3	x√√			
4. $\frac{4}{36}$	$\frac{0}{50} \times \pi \times$	$7 \cdot 4 = 3 \text{ or } 2 \cdot 6 \text{ or } 2 \cdot 5(83)$	award 1/3	xx√			
5. $\frac{4}{36}$	$\frac{0}{50} \times \pi \times$	$7 \cdot 4^2 = 19(\cdot 11)$	award 1/3	xx√			
6. 2>	×π×7·4	4 = 46(·49…)	award 0/3	5			

Question		n	Generic scheme	Illustrative scheme	Max mark
3.			• ¹ start process	• $^{1}24^{2}+(-12)^{2}+8^{2}$	2
			• ² solution	• ² 28	
	Corre		nswer without working award 2/2 $4^2 + 12^2 + 8^2$ for the award of \bullet^1		
			$24^2 + (-12)^2 = \sqrt{720} = 26 \cdot 8(3) \text{ or } 12\sqrt{5}$	ā award 0/2	
			erved Responses: essary:		
1.	√78	_ 4 oi	r 784	award 1/2 ✓×	
2.	22.2	2(7)	or $4\sqrt{31}$ $\left(\sqrt{24^2 - 12^2 + 8^2} = \sqrt{496}\right)$	award 1/2 ×√	
3.	√49	6		award 0/2	
4.	√20	=4.	$4 \left(\sqrt{24 - 12 + 8}\right)$	award 0/2	

Question		n	Generic scheme	Illustrative scheme	Max mark
4.			• ¹ start to process right hand side	• $6x - 6 - 12$	3
			• ² collect like terms	• 2 -3x < -18 or 18 < 3x	
			• ³ solve for x	• $x > 6 \text{ or } 6 < x$	
	Trea . For s	at gue subse	nswer without valid working award 0/3 ess and check as invalid working quent incorrect working final mark is n $\rightarrow x < 6$ award 2/3		
Com	monly	Obse	rved Responses:		
	-		$6-12 \rightarrow 3x < -18 \rightarrow x < -6$	award 1/3 √××	
2	. 3 <i>x</i> <	:6 <i>x</i> -	$1-12 \rightarrow -3x < -13 \rightarrow x > \frac{13}{3}$	award 2/3 ×√√	
3	. (a) 3	Bx = 6	$5x-6-12 \rightarrow -3x = -18 \rightarrow x = 6 \rightarrow x$	>6 award 3/3	
	(b) 3	Bx = 6	$5x-6-12 \rightarrow -3x=-18 \rightarrow x=6$	award 2/3 √√×	

Q	uestio	'n	Generic scheme	Illustrative scheme	Max mark		
5.	(a)		Method 1	Method 1	4		
			• ¹ calculate mean	• ¹ 126			
			• ² calculate $(x - \overline{x})^2$	• ² 36, 0, 1, 25, 16, 4			
			• ³ substitute into formula	$\bullet^3 \sqrt{\frac{82}{5}}$			
			• ⁴ calculate standard deviation	• ⁴ 4(·049)			
			Method 2	Method 2			
			• ¹ calculate mean	• ¹ 126			
			• ² calculate $\sum x$ and $\sum x^2$	• ² 756, 95338			
			• ³ substitute into formula	• $\sqrt[3]{\frac{95338-\frac{756^2}{6}}{5}}$			
			• ⁴ calculate standard deviation	• ⁴ 4(·049)			
	. For		and $4(\cdot 04)$ without working award $1/4$				
		• •	standard deviation =) 4.04 with working				
3	8. (a) For 126 and $\frac{\sqrt{82}}{5} = 4(.049)$ award 4/4						
	(b) For 126 and $\frac{\sqrt{82}}{5} = 1(.811)$ award $3/4 \checkmark \checkmark \checkmark \checkmark$						
Com	monly	Obse	erved Responses:				

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark
5.	(b)		• ¹ compare means	 ¹ eg on average the number of customers was higher on Saturday 	2
			• ² compare standard deviations	 ² eg the number of customers was less varied on Saturday 	
Note 1		wers	must be consistent with answers to par	t (a)	
2	(a)	refere Satur • Acc	nts must involve ence to number of customers and a chr day and/or Sunday ept eg 'there were more customers on 'on average the number of custo not accept eg 'there were more visits o 'the customers were mor 'on average the number	Saturday' omers decreased' on Saturday', re consistent on Saturday'	
3	(a) (b)	eg Ac • Satu • The eg Do • The • The	ward of • ¹ cept urday's average number of customers w amount of people was higher on Sature not accept mean number of customers on Saturda re were more customers at each stall of average number of people visiting the	day ny was more on Saturday	
4	(a) (b)	eg Ac • The • The • Satu eg Do • The • The • The • On a	ward of • ² cept spread of customer numbers on Saturd number of customers on Saturday was urday's customer numbers were less va not accept standard deviation on Saturday was le range of customer numbers on Saturda customers on Saturday were less varie average the number of customers on Sa standard deviation is more consistent	more consistent ried ss ay was less d	
Com	monly	v Obse	erved Responses:		
Question		n	Generic scheme	Illustrative scheme	Max mark
-----------	-------	----------------	--	---------------------------------------	-------------
6.			• ¹ valid strategy	• ¹ 5+4 a = 73 or 5+4×17	2
			• ² state value of a	• ² (<i>a</i> =)17	
Note 1	-	rect a	nswer without working award 2/2		
2	. Acc	ept ƒ	f(17) = 73 without working award 2/2		
3	. Acc	ept u	se of x in place of a		
Com	monly	Obse	erved Responses:		
1	. 5+	4×73	= 297	award 0/2	
2	. 5+	4 <i>a</i> = 7	73 or $5+4\times17 \rightarrow a=17 \rightarrow f(a)=17$	award 2/2	
3	. 5+	4 <i>a</i> = 7	73 or $5+4\times17 \rightarrow f(a)=17$	award 1/2 √×	
4	f(z)	73) = 5	$5 + 4x \rightarrow x = 17$	award 2/2	

Question		n	Generic scheme	Illustrative scheme	Max mark		
7.			• ¹ substitute into formula	$\bullet^1 \frac{4}{3} \times \pi \times 3 \cdot 2^3$	3		
			• ² calculate volume	• ² 137 · 2			
			• ³ round to 2 significant figures	• ³ 140(cm ³)			
1	Notes: 1. Correct answer without working award 0/3 2. Accept variations in π eg $\frac{4}{3} \times 3.14 \times 3.2^3 = 137.188 = 140$						
			rved Responses:				
1	$\cdot \frac{4}{3} \times$	π×6·	$4^3 = 1098 \cdot 0 = 1100$ award 2/	3 ×√√			
	-		$2^2 = 42 \cdot 8 = 43$ award 2/	3 ×√√			
			$2^3 = 42 \cdot 8 = 43$ award 2/	3 √×√			
4	$\cdot \frac{4}{3} \times$	π×3·	2 = 13 · 4 = 13 award 1/	3 ××√			

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
8.		• ¹ rearrange equation	$\bullet^1 \sin x = \frac{1}{7}$	3		
		• ² calculate value of x	• ² 8·2(1)			
		• ³ calculate 2nd value of x	• ³ 171·8 or 171·7(8)			
Note 1		answers without working award 1/3 ××	/			
2	2. Accept	8 and 172 with valid working				
3	B. Degree	signs are not required				
4	4. Prematu	ire rounding: rounded working must be	o at least 2 decimal places			
		$\sin x = \frac{1}{7} = 0.14 \rightarrow x = 8(.04),172 \text{ or } 13$	-			
		$\sin x = \frac{1}{7} = 0.1 \rightarrow x = 6 \text{ or } 5(.73), 174.0$				
E S	 5. Inappropriate use of RAD or GRAD should only be penalised once in Q8, Q9, Q13 or Q17 (a) 0.143,179.856 (RAD) (b) 9.125,170.874 (GRAD) 					
Com	Commonly Observed Responses:					
1	$1. \sin x =$	$\frac{5}{7} \rightarrow x = 45 \cdot 6,134 \cdot 4 \qquad \text{award } 2/3 \neq 2$	$\epsilon \sqrt{}$			
2	2. (a) $\sin x$	$=-\frac{1}{7} \rightarrow x = 188 \cdot 2,351 \cdot 8$ award 2/3	¢√√			
	(b) $\sin x$	$= -\frac{1}{7} \rightarrow x = 8 \cdot 2,171 \cdot 8 \qquad \text{award } 0/3$				

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark	
9.			• ¹ correct substitution into sine rule	$\bullet^1 \ \frac{20}{\sin 37} = \frac{DC}{\sin 105}$	3	
			• ² re-arrange formula	$e^2 \frac{20\sin 105}{\sin 37}$		
			• ³ calculate length	• ³ 32(·1 cm)		
Note 1		rect a	nswer without working award 0/3			
2	. Deg	ree si	gns are not required			
3	. BEV	VARE	$\frac{20}{\sin 37} = \frac{\text{DC}}{\sin 75} \rightarrow 32(\cdot 1) \text{ award } 2/3$	} x√√		
4	. Disr	egard	errors due to premature rounding pro	vided there is evidence		
5	(a)	30(·1	riate use of RAD or GRAD should only b 6) (RAD) 1) (GRAD)	e penalised once in Q8, Q9, Q13 or Q17		
Com	monly	Obse	rved Responses:			
1	1. $\frac{20}{\sin 37} = \frac{?}{\sin 38} \rightarrow \frac{20 \sin 38}{\sin 37} = 20(.46)$ award 2/3 × $\checkmark \checkmark$					
2	$\frac{20}{37}$	$=\frac{DC}{105}$	$a \rightarrow 57 \text{ or } 56(.7)$ award	0/3		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
10.		• ¹ express \overrightarrow{ED} in terms of u and \overrightarrow{DC} in terms of w	• ¹ $\overrightarrow{ED} = 2\mathbf{u}$ and $\overrightarrow{DC} = \frac{1}{2}\mathbf{w}$	2
		• ² express \overrightarrow{BC} in terms of u and w in simplest form	$\bullet^2 \mathbf{u} - \frac{1}{2}\mathbf{w}$	
Note				
1.	Correct	answer without working award 2/2		
2.	Accept	$\mathbf{u} + -\frac{1}{2}\mathbf{w}$ award 2/2		
3.	Evidenc	e for the award of $ullet^1$ may appear on the	diagram	
4.		award of \bullet^1 accept		
	(a) — u —	$\mathbf{w} + 2\mathbf{u} + \frac{1}{2}\mathbf{w}$		
	(b) — u -	$\mathbf{w} + 2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{EA}$		
5.	$\overrightarrow{BA} + \overrightarrow{AE}$	$+\overrightarrow{ED}+\overrightarrow{DC}$ alone is not enough for the av	vard of •1	
6.	For -u	$-\frac{1}{2}\mathbf{w}$ (a) without working award 0/2		
		(b) but may be worth 1/2 if the	ere is valid working	
Com	monly Oh	served Responses:		

Question		Generic scheme	Illustrative scheme	Max mark
11.		• 1 know that $85\% = 9 \cdot 3 \times 10^{11}$	• $85\% = 9 \cdot 3 \times 10^{11}$	3
		• ² begin valid strategy	• ² 1% = $\frac{9 \cdot 3 \times 10^{11}}{85}$	
		• ³ complete calculation within valid strategy	• ³ 1.094×10 ¹² (km ³) or 1094117647000 (km ³)	
Notes	-			
1.		valid working award 3/3 ut working award 0/3		
2.		$9.3 \times 10^{11} = 1.1 \times 10^{12} \text{ or } 1.06 \times 10^{12}$ widence of \bullet^1 award 1/3 $\checkmark \times \times$		
3.		$3 \times 10^{11} = 7 \cdot 9(05) \times 10^{11}$ vidence of \bullet^1 award $1/3 \checkmark x \times y$ wise award $0/3$		
4.	Do not ac	ccept eg 10.94×10^{11} for the award of	3	
Comm	nonly Obse	rved Responses:		
	-	$= 1.094 \times 10^{12}$	award 3/3	
2.	115% = 9·	$3 \times 10^{11} \rightarrow \frac{9 \cdot 3 \times 10^{11}}{1 \cdot 15} = 8 \cdot 086 \times 10^{11}$	award 2/3 ×√√	
3.	15% = 9 ⋅3	$3 \times 10^{11} \rightarrow \frac{9 \cdot 3 \times 10^{11}}{0.15} = 6 \cdot 2 \times 10^{12}$	award 2/3 ×√√	

Qı	uestion	Generic scheme	Illustrative scheme	Max mark
12.		 Method 1 ¹ marshal facts and recognise right angled triangle 	• 1 A 10 10	4
		• ² consistent Pythagoras statement	• $^{2} x^{2} = 13^{2} - 10^{2}$	
		• ³ calculate x	• 3 8 · 3()	
		• ⁴ calculate width	• ⁴ 21·3(cm)	
		Method 2 • ¹ marshal facts and recognise right angled triangle	• 1 26 20 B	
		• ² consistent Pythagoras statement	• $^{2} x^{2} = 26^{2} - 20^{2}$	
		• ³ calculate x	• ³ 16·6()	
		• ⁴ calculate width	• ⁴ 21·3(cm)	

Question	Generic scheme	Illustrative scheme	Max mark			
Notes:						
1. Correct a	answer without working award 0/4					
 In the ab of ●¹ and 	sence of a diagram accept $x^2 = 13^2 - 10^{-10}$	x^2 or $x^2 = 26^2 - 20^2$ as evidence for the	award			
	BEWARE Where a diagram is shown, working must be consistent with the diagram • ² is not available for an <u>incorrect</u> diagram leading to $x^2 = 13^2 - 10^2$ or $x^2 = 26^2 - 20^2$					
4. • ² is avai	\bullet^2 is available for a valid trig. method					
	candidate assumes the sizes of one or only \bullet^1 and \bullet^4 are available	both of the smaller angles in the right-	angled			
	available following a Pythagoras (or tri 13 and 10 or 26 and 20	g.) calculation within a right-angled tri	iangle			
7. Disregard	d errors due to premature rounding pro	vided there is evidence				
Commonly Obse	erved Responses:					
1. $x^2 = 13^2$	$+10^2 \rightarrow x = 16 \cdot 4$; width = 29 \cdot 4					
. ,	ing inconsistent with correct diagram	award 3/4 $\checkmark \times \checkmark \checkmark$				
· ,	ing consistent with candidate's diagram ne rule may be used to calculate ${\mathfrak X}$)	award $3/4 \times \sqrt{\sqrt{2}}$				
(c) no di	-	award 2/4 ××√√				
2. $x^2 = 26^2$	$+20^2 \rightarrow x = 32.8$; width = 29.4					
(a) worki	ing inconsistent with correct diagram	award $3/4 \checkmark \times \checkmark \checkmark$				
	ing consistent with candidate's diagram	award $3/4 \times \sqrt{\sqrt{2}}$				
(c) no di	ne rule may be used to calculate ${\mathcal X}$) agram	award 2/4 ××√√				
3. $x^2 = 20^2$	$-13^2 \rightarrow x = 15 \cdot 2$; width = 28 \cdot 2					
()	ing consistent with candidate's diagram ne rule may be used to calculate ${\mathcal X}$)	award 2/4 $\times \sqrt{2}$				
(b) no di	-	award 1/4 ××√×				

Q	Question		Generic scheme	Illustrative scheme	Max mark
13.			 ¹ correct substitution into cosine rule 	$\bullet^1 \frac{10 \cdot 3^2 + 5 \cdot 6^2 - 7 \cdot 2^2}{2 \times 10 \cdot 3 \times 5 \cdot 6}$	4
			 ² correct calculation of cos YTF ³ calculate angle YTF 	• ² $\frac{85 \cdot 61}{115 \cdot 36} (= 0 \cdot 742)$ • ³ 42(.088)	
			• ⁴ calculate bearing	• ⁴ 282(·088)	

Question	Generic scheme	Illustrative scheme	Max mark
Notes: 1. Correct a	nswer without working award 0/4		
	equent invalid working ● ⁴ is not availabl → 360 – 282 = 078	e	
3. Degree s	igns are not required		
evidence	in incorrect angle has been calculated of an intention to calculate angle T = $\frac{10 \cdot 3^2 + 7 \cdot 2^2 - 5 \cdot 6^2}{2 \times 10 \cdot 3 \times 7 \cdot 2}$ OR T = 31 OR an	• ⁴ can only be awarded where there gle marked at T on the diagram	is clea
5. \bullet^4 can on	ly be awarded for adding 240 to a valu	e previously calculated using trig.	
6. Disregard	l errors due to premature rounding pro	vided there is evidence	
(a) 240•	riate use of RAD or GRAD should only b 73 (RAD) 76 (GRAD)	e penalised once in Q8, Q9, Q13 or Q17	,
Commonly Obse	erved Responses:		
Working must b	e shown.		
1. (a) cos T	$=\frac{10\cdot 3^2+7\cdot 2^2-5\cdot 6^2}{2\times 10\cdot 3\times 7\cdot 2}=\frac{126\cdot 57}{148\cdot 32}\rightarrow 31\rightarrow 32$	award $3/4 \times \sqrt{\sqrt{2}}$ (see Note 4	.)
(b)	$\frac{10\cdot 3^2 + 7\cdot 2^2 - 5\cdot 6^2}{2\times 10\cdot 3\times 7\cdot 2} = \frac{126\cdot 57}{148\cdot 32} \rightarrow 31 \rightarrow 2$	71 award 2/4 ×√√×	
2. (a) cosT	$=\frac{7\cdot 2^2+5\cdot 6^2-10\cdot 3^2}{2\times 7\cdot 2\times 5\cdot 6}=\frac{-22\cdot 89}{80\cdot 64}\rightarrow 106-$	→346 award 3/4 ×√√√ (see Note 4	·)
(b)	$\frac{7 \cdot 2^2 + 5 \cdot 6^2 - 10 \cdot 3^2}{2 \times 7 \cdot 2 \times 5 \cdot 6} = \frac{-22 \cdot 89}{80 \cdot 64} \rightarrow 106 - 106$	→346 award 2/4 ×√√×	

Q	Question		Generic scheme	Illustrative scheme	Max mark	
14.			Method 1	Method 1	2	
			 ¹ isolate term in y or divide throughout by 5 	• ¹ $-5y = + 20$ or $ 20 = 5y$ or $\frac{2x}{5} - \frac{5y}{5} = \frac{20}{5}$		
			• ² state coordinates (must use brackets)	• ² (0, -4)		
			Method 2	Method 2		
			• ¹ substitute $x = 0$ into equation	• 1 2×0-5 <i>y</i> = 20		
			 ² state coordinates (must use brackets) 	• ² (0, -4)		
1	 Notes: Correct answer without working award 2/2 Disregard errors in the <i>x</i> term for the award of •¹ For finding where the line crosses the <i>x</i>-axis, (10, 0), with working award 1/2 					
Com	Commonly Observed Responses					
1	1. 0, -4 (no working necessary) award $1/2 \checkmark \times$					
2	2. $y = -4$ (no working necessary) award $1/2 \checkmark \times$					

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark	
15.			• ¹ start to divide fractions	• $\frac{n}{n^2 - 4} \times \frac{n - 2}{3}$ • $\frac{n}{3} \frac{n}{3(n + 2)}$ or $\frac{n}{3n + 6}$ S	3	
			• ² factorise	• ² $(n+2)(n-2)$		
			• ³ multiply and simplify	• ³ $\frac{n}{3(n+2)}$ or $\frac{n}{3n+6}$ S		
Note	-	rect a	nswer without working 0/3			
			2			
2	. For	subse	equent incorrect working, the final mar	k is not available		
	eg	(a) - 3	$\frac{n}{3(n+2)} = \frac{n}{3n+2} \qquad \text{award } 2/3 \text{with } n = \frac{n}{3n+2}$			
	(b) $\frac{\hbar}{3(\hbar+2)} = \frac{1}{3(1+2)} = \frac{1}{9}$ award 2/3 $\sqrt{4} \times$					
Com	Commonly Observed Responses:					
1	1. $\frac{n}{n^2 - 4} \div \frac{3(n+2)}{n^2 - 4} \to \frac{n}{n^2 - 4} \times \frac{n^2 - 4}{3(n+2)} \to \frac{n}{3(n+2)}$ award 3/3					

Q	uestion	Generic scheme	Illustrative scheme	Max mark
16.		• ¹ start valid strategy	• 1 40 ² + 40 ² or 40 ² + 70 ² (stated or implied by • ²)	4
		• ² continue strategy	$\bullet^2 \sqrt{40^2 + 40^2 + 70^2}$	
		• ³ calculate length of space diagonal	• ³ 90	
		• ⁴ valid conclusion with comparison	• ⁴ Yes, since $85 < 90$	

Question	Generic scheme	Illustrative scheme	Max mark					
Notes: 1. Correct answer without working 0/4								
2. Accept correct use of cosine rule								
3. Accept e	3. Accept eg $\begin{pmatrix} -40 \\ 40 \\ 70 \end{pmatrix} \rightarrow \sqrt{(-40)^2 + 40^2 + 70^2}$ for the award of \bullet^1 and \bullet^2							
	ly be awarded for a valid conclusion an /thagoras (or trigonometric) calculatior		ned					
(b) \	• ⁴ : $\sqrt{40^2 + 40^2 + 70^2} = 90$; Yes, since the un $\sqrt{40^2 + 40^2 + 70^2} = 90$; Yes $\sqrt{40^2 + 70^2} = 80.62$; No, since the lock	award 3/4 🗸						
Commonly Obse	erved Responses:							
	$+70^{2} = 80.62;$ No, since $85 > 80.62$ $+40^{2} = 56.56;$ No, since $85 > 56.56$							
	$\frac{1}{1+40^2} = 56 \cdot 56 = 57 \rightarrow \sqrt{57^2 + 70^2} = 90 + 1000$ $\frac{1}{1+70^2} = 80 \cdot 62 = 81 \rightarrow \sqrt{81^2 + 40^2} = 90$							
. ,	$40^{2} + 70^{2} = 8100; 85^{2} = 7225$ Yes, since $40^{2} + 70^{2} = 8100; 85^{2} = 7225$ Yes, since							
(b) 40^2 + (c) 40^2 +	$40^2 = 3200; 85^2 = 7225$ No, since $3200 < 40^2 = 3200; 85^2 = 7225$ No, since $3200 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 < 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$	7225 award 1/4 √××× 7225 award 2/4 √××√						
5. $40^2 + 40$	$^{2} = 3200; 70^{2} = 4900$ No, since $3200 < 4900$	000 award 1/4 √×××						

Q	uestion	Generic scheme	Illustrative scheme	Max mark
17.		 ¹ substitute correctly into area of triangle formula 	• $\frac{1}{2} \times 38 \times 55 \times \sin 75 (= 1009 \cdot 39)$	5
		• ² appropriate fraction for sector	• $\frac{2}{360}$	
		• ³ substitute correctly into area of sector formula	• ${}^{3}\frac{75}{360} \times \pi \times 30^{2} (=589.04)$	
		 ⁴ know to subtract area of sector from area of triangle 	 ⁴ evidence of area of triangle – area of sector 	
		 ⁵ calculate area of shaded region and state correct units 	• ⁵ 420(·3) cm ²	

Question		Generic scheme	Illustrative scheme	Max mark				
Notes:								
1.	Correct a	answer without working award 0/5						
2.	Accept va	ariations in π						
3.	Disregard	d errors due to premature rounding prov	vided there is evidence					
4.	Inapprop Q9, Q13 (riate use of GRAD leading to 376(·40) or Q17	cm ² should only be penalised once in	Q8,				
5.	The following answers should be awarded • 4/5 if the use of RAD has already been penalised in Q8, Q9 or Q13 • 3/5 if the use of RAD has not already been penalised in Q8, Q9 or Q13 (a) $-405(\cdot 23) - 589(\cdot 04) = -994(\cdot 28) \text{ cm}^2$							
	(b) 405(·2	$23) - 589(.04) = -183(.81) \text{ cm}^2$						
	(c) 589(·	$04) - 405(.23) = 183(.81) \text{ cm}^2$						
	(d) 589(·	$04) - (-405(.23)) = 994(.28) \text{ cm}^2$						
6.	-	v available for calculating the sum or di of a sector, where the area of the triang		he				
Workiı	ng must b							
		$5 \times \sin 75 - \frac{75}{360} \times \pi \times 60 = 970(.1) \text{ cm}^2$						
		$5 \times \sin 75 + \frac{75}{360} \times \pi \times 30^2 = 1598(.4) \text{ cm}^2$	award $4/5 \checkmark \checkmark \checkmark \checkmark \checkmark$					
3.	$\frac{1}{2} \times 38 \times 5$	$5 \times \sin 75 + \frac{75}{360} \times \pi \times 60 = 1048(.6) \text{ cm}^2$	award 3/5 🗸 🗸 × × 🗸					
4.	$\frac{75}{360} \times \pi \times$	$30^2 = 589(.0) \text{ cm}^2$	award 2/5 ×√√××					
5.	$\frac{1}{2} \times 38 \times 5$	$55 \times \sin 75 = 1009(\cdot 3) \text{ cm}^2$	award 1/5 √××××					
	2	2827(·4) cm ²	award 0/5					

Q	Question		Generic scheme	Illustrative scheme	Max mark
18.	(a)		Method 1	Method 1	3
			• ¹ state linear scale factor	• ¹ eg $\frac{24}{16}$ or equivalent	
			• ² know to multiply volume by cube of linear scale factor	• ² 576 × $\left(\frac{24}{16}\right)^3$	
			• ³ correct calculation (must involve a power of the scale factor), valid comparison and conclusion	 ³ 1944 ≠ 1125, so the cartons are not similar 	
			<u>Method 2</u>	<u>Method 2</u>	
			• ¹ state linear scale factor	• ¹ eg $\frac{16}{24}$ or equivalent	
			• ² know to divide volume by cube of linear scale factor	• ² 576 ÷ $\left(\frac{16}{24}\right)^3$	
			• ³ correct calculation (must involve a power of the scale factor), valid comparison and conclusion	• ³ 1944 ≠ 1125 , so the cartons are not similar	
			Method 3	Method 3	
			• ¹ state volume scale factor	• ¹ eg $\frac{1125}{576}$ or equivalent	
			• ² know to multiply depth by cube root of volume scale factor	• $^{2} \sqrt[3]{\frac{1125}{576}} \times 16$	
			 ³ correct calculation (must involve a root of the volume scale factor), valid comparison and conclusion 	• ³ 20 ≠ 24 , so the cartons are not similar	
			<u>Method 4</u>	<u>Method 4</u>	
			• ¹ state linear scale factor	• ¹ eg $\frac{24}{16}$ or equivalent	
			• ² know to compare cube of linear scale factor with volume scale factor	• ${}^{2}\left(\frac{24}{16}\right)^{3}$ and $\frac{1125}{576}$	
			• ³ correct calculation (must involve a power of the scale factor), valid comparison and conclusion	 ³ 3·375 ≠ 1·95, so the cartons are not similar 	

Question		n	Generic scheme	Illustrative scheme	Max mark	
18.	(a)		Method 5	Method 5		
			• ¹ state volume scale factor	• ¹ eg $\frac{1125}{576}$ or equivalent		
			 ² know to compare cube root of volume scale factor with linear scale factor 	• $\sqrt[3]{\frac{1125}{576}}$ and $\frac{24}{16}$		
			• ³ correct calculation(must involve a root of the volume scale factor), valid comparison and conclusion	 ³ 1·25 ≠ 1·5, so the cartons are n similar 	ot	
Note 1.		ect ar	nswer without working award 0/3			
2.			vard of \bullet^1 accept a rounded or truncate r evidence of the scale factor eg $\frac{1125}{576}$	-	decimal	
3.			emature rounding leads to an inaccurate			
	eg 1	125×	$\left(\frac{16}{24}\right)^3 \rightarrow 1125 \times 0.7^3 = 385.875; 385.875$	$75 \neq 576$, so the cartons are not similar	lar	
			(47)	award 2/3		
4.			vard of \bullet^3 there must be a numerical co e different'; a simple statement of 'not		ne two scale	
Com	monly	[,] Obse	erved Responses:			
	-		$\left(\frac{5}{4}\right)^3 = 333 \cdot 3; 333 \cdot 3 \neq 576$, so the cart	ons are not similar aw	ard 3/3	
2.	(a) 5	$576 \times \frac{1}{1}$	$\frac{24}{16} = 864$; 864 \neq 1125, so the cartons ar	e not similar aw	ard 1/3 √××	
	(b) 5	b) $576 \times \frac{16}{24} = 384$; $384 \neq 1125$, so the cartons are not similar award $1/3 \checkmark \times 3$				
3.	(a) 5	576×($\times \left(\frac{24}{16}\right)^2 = 1296$; 1296 \neq 1125, so the cartons are not similar award 2/3 $\checkmark \times \checkmark$			
	(b) 5	576×($\left(\frac{16}{24}\right)^2 = 256$; 256 \neq 1125, so the cartons are not similar award 2/3 $\checkmark \times$			
4.	(a) -	$\frac{576}{16^3} =$	$= 0.14, \frac{1125}{24^3} = 0.08; 0.14 \neq 0.08,$ so the cartons are not similar award 3/3			
	(b) -	$\frac{576}{16^2} =$	$2 \cdot 25, \frac{1125}{24^2} = 1 \cdot 95; 2 \cdot 25 \neq 1 \cdot 95,$ so the	e cartons are not similar awa	ard 2/3 √×√	
	(c) -	$\frac{576}{16} =$	$36, \frac{1125}{24} = 46.875; 36 \neq 46.875$, so the o	cartons are not similar away	ard 1/3 √××	

Q	Question		Generic scheme	Illustrative scheme	Max mark		
18.	(b)		Method 1	Method 1	2		
			• ¹ find volume scale factor	• $1 \frac{1500}{576}$			
			• ² correct calculation to find height (must involve a root of the volume scale factor)	• ² $\sqrt[3]{\frac{1500}{576}} \times 16 = 22(\cdot 0 \text{ cm})$			
			Method 2	Method 2			
			• ¹ find volume scale factor	• $\frac{576}{1500}$			
			• ² correct calculation to find height (must involve a root of the volume scale factor)	• ² $16 \div \sqrt[3]{\frac{576}{1500}} = 22(\cdot 0 \text{ cm})$			
Note 1		rect a	nswer without working award 0/2				
2	2. Disregard errors due to premature rounding provided there is evidence						
Com	Commonly Observed Responses:						
1	1. $\frac{1500}{576} \times 16 = 41.66$ award $1/2 \checkmark \times$						
2	$\sqrt{\frac{1}{5}}$	500 576 ×	16=25·81 award 1/2 √×				
3	$\cdot \sqrt[3]{\frac{1}{1}}$	500 125 ×	24=26·41 award 1/2 ×√				

[END OF MARKING INSTRUCTIONS]