

### 2019 Mathematics

# National 5 - Paper 1 (Non-calculator)

### **Finalised Marking Instructions**

©Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.



#### General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example  $6 \times 6 = 12$ , candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example



The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.  $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 or 3

#### (i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
  - $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$  $\frac{15}{0\cdot 3} \text{ must be simplified to } 50 \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$  $\sqrt{64} \text{ must be simplified to } 8^*$

\*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
  - working subsequent to a correct answer
  - correct working in the wrong part of a question
  - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
  - omission of units
  - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$  written as  $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$  $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$ 

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

| Strategy 1 attempt 1 is worth 3 marks.                             | Strategy 2 attempt 1 is worth 1 mark.                              |
|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Strategy 1 attempt 2 is worth 4 marks.                             | Strategy 2 attempt 2 is worth 5 marks.                             |
| From the attempts using strategy 1, the resultant mark would be 3. | From the attempts using strategy 2, the resultant mark would be 1. |

For example:

In this case, award 3 marks.

#### Marking instructions for each question

| Question |                      | n                   | Generic scheme                                    |                | Illustrative scheme           | Max<br>mark |
|----------|----------------------|---------------------|---------------------------------------------------|----------------|-------------------------------|-------------|
| 1.       |                      |                     | • <sup>1</sup> substitute into $5x^3$             | • <sup>1</sup> | $5(-2)^3$ or equivalent       | 2           |
|          |                      |                     | • <sup>2</sup> evaluate $5x^3$                    | •2             | -40                           |             |
| Not      | es:                  |                     |                                                   |                |                               |             |
| 1.       | Correct              | answ                | ver without working award 2/2                     |                |                               |             |
| 2.       | Accept               | 5×-2                | $2^3$ for $\bullet^1$                             |                |                               |             |
| 3.       | For sub              | seque               | ent incorrect working, $ullet^2$ is not available | е              |                               |             |
| Con      | nmonly               | obse                | rved responses:                                   |                |                               |             |
| 1.       | -1000                | [(5×–               | 2) <sup>3</sup> ] (no working necessary)          |                | award 1/2 $\times \checkmark$ |             |
| 2.       | (a) –2=              | =5×(-               | $-2)^3 \rightarrow -2 = -40$                      |                | award 2/2                     |             |
|          | (b) –2 =             | =5×(-               | $(-2)^3 \rightarrow -2 = -40 \rightarrow x = -38$ |                | award 1/2 √×                  |             |
| 3.       | 5 × 2 <sup>3</sup> = | = 40                |                                                   |                | award 0/2                     |             |
| 4.       | 5×(-2)               | ) <sup>2</sup> = 20 | )                                                 |                | award 0/2                     |             |

| Question                                           | Generic scheme                                                          | Illustrative scheme                                                     | Max<br>mark |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|--|--|--|
| 2.                                                 | • <sup>1</sup> start to multiply fractions                              | $\bullet^1  \frac{3}{8} \times \frac{12}{7}$                            | 2           |  |  |  |
|                                                    | • <sup>2</sup> consistent answer in simplest form                       | • <sup>2</sup> $\frac{9}{14}$                                           |             |  |  |  |
| Notes:                                             |                                                                         |                                                                         |             |  |  |  |
| 1. Correct a                                       | nswer without working                                                   | award 0/2                                                               |             |  |  |  |
| 2. $\bullet^2$ is only                             | available where simplifying is required                                 |                                                                         |             |  |  |  |
| 3. For subse                                       | equent incorrect working, •² is not availabl                            | e                                                                       |             |  |  |  |
|                                                    | $r = \frac{9}{14} = 1\frac{5}{14}$                                      | award 1/2 √×                                                            |             |  |  |  |
| Commonly o                                         | bserved responses:                                                      |                                                                         |             |  |  |  |
| 1. $\frac{3}{8} \times \frac{12}{7} = \frac{3}{2}$ | 3 <u>6</u><br>56                                                        | award 1/2 √×                                                            |             |  |  |  |
| 2. (a) $\frac{3}{8} \times \frac{7}{12}$           |                                                                         | award 1/2 ×√                                                            |             |  |  |  |
| (b) $\frac{3}{8} \times \frac{7}{12}$              | $\frac{1}{2} = \frac{21}{96}$                                           | award 0/2                                                               |             |  |  |  |
| 3.                                                 | • <sup>1</sup> start to expand                                          | • <sup>1</sup> evidence of any 3 correct terms<br>eg $2x^3 - 7x^2 - 3x$ | 3           |  |  |  |
|                                                    | • <sup>2</sup> complete expansion                                       | • <sup>2</sup> $2x^3 - 7x^2 - 3x + 10x^2 - 35x - 15$                    |             |  |  |  |
|                                                    | • <sup>3</sup> collect like terms (which must include a term in $x^3$ ) | • <sup>3</sup> $2x^3 + 3x^2 - 38x - 15$                                 |             |  |  |  |
| Notes:                                             |                                                                         |                                                                         |             |  |  |  |
| 1. Correct a                                       | 1. Correct answer without working award 3/3                             |                                                                         |             |  |  |  |
| 2. For subse                                       | equent incorrect working, $\bullet^3$ is not available                  | e                                                                       |             |  |  |  |
| Commonly o                                         | bserved responses:                                                      |                                                                         |             |  |  |  |

|     | Question                          |                         | Generic scheme                                                                                                 | Illustrative scheme                                                  | Max<br>mark |
|-----|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|
| 4.  |                                   |                         | Method 1<br>•1 appropriate fraction                                                                            | Method 1<br>•1 $\frac{240}{360}$ or equivalent                       | 3           |
|     |                                   |                         | • <sup>2</sup> consistent substitution into appropriate formula                                                | • <sup>2</sup> $\frac{240}{360} \times 3.14 \times 60$               |             |
|     |                                   |                         | • <sup>3</sup> calculate length of arc                                                                         | • <sup>3</sup> 125·6 (cm)                                            |             |
|     |                                   |                         | Method 2                                                                                                       | Method 2                                                             |             |
|     |                                   |                         | • <sup>1</sup> appropriate fraction                                                                            | • <sup>1</sup> $\frac{240}{360}$ or equivalent                       |             |
|     |                                   |                         | • <sup>2</sup> consistent substitution into appropriate formula                                                | • <sup>2</sup> $\frac{240}{360} = \frac{\text{arc}}{3.14 \times 60}$ |             |
|     |                                   |                         | • <sup>3</sup> calculate length of arc                                                                         | • <sup>3</sup> 125·6 (cm)                                            |             |
| Not | es:                               |                         |                                                                                                                |                                                                      |             |
| 1.  | Correct                           | t ansv                  | ver without working                                                                                            | award 0/3                                                            |             |
|     | $\frac{\text{BEWAR}}{240}\pi r^2$ |                         | $\frac{0}{0} \times 3.14 \times 30^2 \left( = \frac{240}{360} \times 3.14 \times 30 \times 2 \right) = 125.00$ | 6(cm) award 1/3 √××                                                  |             |
| 3.  | $\frac{120}{360} \times 3$        | 8•14×                   | $60 = 62 \cdot 8(cm)$                                                                                          | award 2/3 $\times \sqrt{}$                                           |             |
| Cor | nmonly                            | obse                    | rved responses:                                                                                                |                                                                      |             |
| 1.  | $\frac{240}{360} \times 3$        | 8•14×                   | $30 = 62 \cdot 8(cm)$                                                                                          | award 2/3 √×√                                                        |             |
| 2.  | $\frac{360}{240} \times 3$        | 8·14×                   | 60 = 282 · 6(cm)                                                                                               | award 2/3 × 🗸 🗸                                                      |             |
| 3.  | $\frac{240}{360} \times 7$        | τ×60                    | only                                                                                                           | award 1/3 √××                                                        |             |
| 4.  | 3•14×6                            | 60 = 1                  | 88·4(cm)                                                                                                       | award 0/3                                                            |             |
| 5.  | $\frac{240}{360}\pi r$            | $r^{2} = \frac{24}{36}$ | $\frac{10}{50} \times 3.14 \times 30^2 = 1884(cm)$                                                             | award 2/3 √×√                                                        |             |

| (    | Question                                                                                                        |                    | Generic scheme                                                      | Illustrative scheme               | Max<br>mark |
|------|-----------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|-----------------------------------|-------------|
| 5.   | (a)                                                                                                             |                    | • <sup>1</sup> state median                                         | • <sup>1</sup> 5                  | 3           |
|      |                                                                                                                 |                    | • <sup>2</sup> find quartiles                                       | • <sup>2</sup> 3.5 and 8          |             |
|      |                                                                                                                 |                    | • <sup>3</sup> calculate SIQR                                       | • <sup>3</sup> 2·25               |             |
| Not  | es:                                                                                                             |                    | L                                                                   |                                   |             |
|      | . ,                                                                                                             |                    | nedian without working<br>SIQR without working, do not award •² o   | award $\bullet^1$                 |             |
| 2.   | Accept                                                                                                          | quart              | iles indicated in the list or on a diagram                          | n for •²                          |             |
|      | (a) ord                                                                                                         | ered l             | IQR is found from an issing term or one extra                       | number award $2/3 \times \sqrt{}$ |             |
|      | (b) unc                                                                                                         | ordere             | d list $Q_2 = 6$ , SIQR $= \frac{1}{2}(7 - 5 \cdot 5) = 0 \cdot 75$ | award 1/3 ××√                     |             |
| 4.   | • <sup>2</sup> and                                                                                              | • <sup>3</sup> are | not available for finding $\frac{1}{2}$ of the range                | e ie $\frac{10-3}{2} = 3 \cdot 5$ |             |
| Con  | nmonly                                                                                                          | obse               | rved responses:                                                     |                                   |             |
| 1.(a | 1. (a) $Q_2 = 5, Q_1 = 4, Q_3 = 7$ ; SIQR = $\frac{1}{2}(7-4) = 1.5$ or $\frac{3}{2}$ award 2/3 $\sqrt{\times}$ |                    |                                                                     |                                   |             |
| (b   | (b) $Q_2 = 5$ ; SIQR = $\frac{1}{2}(7-4) = 1.5$ award 1/3 $\checkmark \times \times$                            |                    |                                                                     |                                   |             |
|      |                                                                                                                 |                    |                                                                     |                                   |             |

| Question |                               | n                                                           | Generic scheme                                                                                                                                                                                                                        | Illustrative scheme                                                                                               | Max<br>mark |
|----------|-------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|
| 5.       | (b)                           |                                                             | • <sup>4</sup> valid comment comparing medians                                                                                                                                                                                        | • <sup>4</sup> eg On average, temperatures in<br>Grantford are lower.                                             | 2           |
|          |                               |                                                             | <ul> <li>valid comment comparing SIQRs</li> </ul>                                                                                                                                                                                     | • <sup>5</sup> eg Temperatures in Grantford are less consistent.                                                  |             |
| Note     | es:                           |                                                             |                                                                                                                                                                                                                                       |                                                                                                                   |             |
| e<br>s   | eg If in<br>ame ir<br>f in pa | part<br>both<br>rt (a)                                      | places' or equivalent.                                                                                                                                                                                                                | ).<br>/ard • <sup>4</sup> for 'on average the temperature<br>• <sup>5</sup> for 'the spread of temperatures is th |             |
| (        | a) Acc                        | ept e                                                       | nust refer to Grantford and/or Endoch<br>g On average the temperature in Endoc<br>ccept eg On average the temperature i                                                                                                               | -                                                                                                                 |             |
| (        | a) Acc<br>•<br>(b) Do<br>•    | ept e<br>On av<br>In ger<br><b>not</b> ao<br>The n<br>The t | rd of ● <sup>4</sup><br>g<br>verage Grantford is colder<br>neral Endoch is warmer<br>ccept eg<br>nedian temperature in Grantford is less<br>cemperature in Endoch is more (this im<br>verage Endoch's temperature is better           |                                                                                                                   |             |
| (        | a) Acc<br>b) Do               | ept e<br>The s<br>The t<br><b>not</b> ac<br>Grant<br>The r  | rd of • <sup>5</sup><br>g<br>spread of temperatures is more in Gran<br>semperatures in Endoch are less varied<br>ccept eg<br>tford's SIQR is more<br>range of Endoch's temperatures is less<br>verage the temperatures in Grantford a |                                                                                                                   |             |

| Question |                     | uestion Generic scheme | Illustrative scheme                                                                                                                   | Max<br>mark                                               |         |
|----------|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|
| 6.       | (a)                 |                        | Method 1<br>• use points $(1.5,14)$ and $(3.5,8)$ to<br>find gradient                                                                 | • <sup>1</sup> $-\frac{6}{2}$ or equivalent               | 3       |
|          |                     |                        | • <sup>2</sup> substitute gradient and a point<br>into $y-b=m(x-a)$                                                                   | • <sup>2</sup> eg $y-8=-\frac{6}{2}(x-3\cdot 5)$          |         |
|          |                     |                        | • <sup>3</sup> state equation in terms of<br><i>F</i> and <i>E</i> in simplest form<br>(remove any brackets and collect<br>constants) | • <sup>3</sup> eg $F = -3E + 18.5$                        |         |
|          |                     |                        | Method 2<br>• 1 use points $(1.5,14)$ and $(3.5,8)$ to<br>find gradient                                                               |                                                           |         |
|          |                     |                        | • <sup>2</sup> substitute gradient and a point<br>into $y = mx + c$                                                                   | • <sup>2</sup> eg 8 = $-\frac{6}{2} \times 3 \cdot 5 + c$ |         |
|          |                     |                        | • <sup>3</sup> state equation in terms of<br><i>F</i> and <i>E</i> in simplest form                                                   | • <sup>3</sup> eg $F = -3E + 18.5$                        |         |
| Note     | s:                  |                        |                                                                                                                                       |                                                           |         |
| 1. C     | orrect              | answ                   | er without working                                                                                                                    | award 0/3                                                 |         |
| 2. •     | <sup>1</sup> is not | t avai                 | lable for using points other than $(1.5, 1)$                                                                                          | 4)and $(3.5,8)$ to find the gradient                      |         |
| 3. G     | iradier             | nt nee                 | ed not be simplified for the award of $ullet^2$                                                                                       |                                                           |         |
| Com      | monly               | obse                   | rved responses:                                                                                                                       |                                                           |         |
|          | -                   |                        | e shown.                                                                                                                              |                                                           |         |
|          | v = -3<br>v = -3    |                        |                                                                                                                                       | award 2/3 √√×<br>award 1/3 √××                            |         |
|          | $F = -\frac{3}{1}$  |                        | 18-5                                                                                                                                  | award 2/3 √√×                                             |         |
|          |                     |                        | $-3 \rightarrow y - 7 = -3(x - 4) \rightarrow F = -3E + 19$                                                                           | award 2/3 ×√√                                             |         |
|          | (b)                 |                        | • <sup>4</sup> calculate fuel consumption                                                                                             | • <sup>4</sup> 15·2 (km/l)                                | 1       |
| 2. •     | onsist              |                        | nswer without working award 1/1, but a lable where an incorrect answer in (a)                                                         | see Note 2.<br>is followed through to give a negative v   | alue ir |
| Com      | monly               | obse                   | rved responses:                                                                                                                       |                                                           |         |

|    | Question                                     | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Illustrative scheme                                                              | Max<br>mark |
|----|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|
| 7. |                                              | Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method 1                                                                         | 3           |
|    |                                              | • <sup>1</sup> multiply by 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • <sup>1</sup> $2A = h(x+y)$                                                     |             |
|    |                                              | • <sup>2</sup> divide by $h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • <sup>1</sup> $2A = h(x + y)$<br>• <sup>2</sup> $\frac{2A}{h} = x + y$          |             |
|    |                                              | • <sup>3</sup> subtract y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • <sup>3</sup> $x = \frac{2A}{h} - y$                                            |             |
|    |                                              | Method 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method 2                                                                         |             |
|    |                                              | • <sup>1</sup> multiply by 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • <sup>1</sup> $2A = h(x+y)$                                                     |             |
|    |                                              | • <sup>2</sup> expand bracket <b>and</b> subtract <i>hy</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • <sup>2</sup> $2A - hy = hx$                                                    |             |
|    |                                              | • <sup>3</sup> divide by $h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • <sup>3</sup> $x = \frac{2A - hy}{h}$                                           |             |
| No | tes:                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |             |
| 1. | Correct answ                                 | ver without working award 0/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |             |
| 2. | Apply Methor<br>• <sup>1</sup>               | d 2 instructions in cases where bracket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is expanded. Candidates may do ●² follo                                          | wed by      |
| 3. |                                              | heck all steps in answer<br>+ $hy \rightarrow \frac{1}{2}hx = A - hy \rightarrow hx = 2A - hy - hy - hy = 2A - hy - hy - hy = 2A - hy - hy - hy = 2A - h$ | $\Rightarrow x = \frac{2A - hy}{h}$ award 1/3 $\times \times \checkmark$ (Method | d 2)        |
| 4. | For subseque                                 | ent incorrect working $\bullet^3$ is not available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |             |
| 5. | Where final                                  | <b>answer</b> includes $\times$ or $\div$ sign(s), the matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aximum award is 2/3                                                              |             |
| 6. | Accept a fina                                | al answer of $x = \frac{A2 - hy}{h}$ (working must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t be shown) as bad form award 3/3                                                |             |
|    | •                                            | rved responses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |             |
| 1. | $x = \frac{2a - hy}{h}$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | award 3/3                                                                        |             |
| 2. | $x = \frac{A}{\frac{1}{2}h} - y$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | award 2/3 ×√√                                                                    |             |
| 3. | $x = \frac{A - \frac{1}{2}hy}{\frac{1}{2}h}$ | ,<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | award 2/3 ×√√                                                                    |             |

|    | Questic                        | on                | Generic scheme                                                                    | Illustrative scheme                                                  | Max<br>mark |
|----|--------------------------------|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|
| 8. | (a)                            |                   | • <sup>1</sup> construct equation                                                 | • $^{1}$ eg $7c + 3g = 215$                                          | 1           |
|    | <b>tes:</b><br>Accept          | 7c+3              | 3g = 215 kg as bad form                                                           |                                                                      | 1           |
|    | (b)                            |                   | • <sup>2</sup> construct equation                                                 | • <sup>2</sup> eg 5 <i>c</i> + 4 <i>g</i> = 200                      | 1           |
|    | <b>tes:</b><br>Accept          | 5 <i>c</i> +4     | 4g = 200 kg as bad form                                                           |                                                                      | 1           |
|    | (c)                            |                   | • <sup>3</sup> correct scaling                                                    | • <sup>3</sup> eg $\frac{28c + 12g = 860}{15c + 12g = 600}$          | 4           |
|    |                                |                   |                                                                                   | or $\frac{35c + 15g = 1075}{35c + 28g = 1400}$                       |             |
|    |                                |                   | • <sup>4</sup> value for $c$ or $g$                                               | • $c = 20 \text{ or } g = 25$                                        |             |
|    |                                |                   | • <sup>5</sup> value for $g$ or $c$                                               | • <sup>5</sup> $g = 25 \text{ or } c = 20$                           |             |
|    |                                |                   | • <sup>6</sup> communicate answer in kilograms                                    | • <sup>6</sup> cement = 20kg , gravel = 25kg                         |             |
| No | tes:                           |                   |                                                                                   |                                                                      |             |
| 1. | Correct                        | t answ            | ver without working                                                               | award 0/4                                                            |             |
| 2. | For a s                        | olutio            | n obtained by guess and check                                                     | award 0/4                                                            |             |
| 3. | ● <sup>6</sup> is no           | ot avai           | lable if either $c$ or $g$ is negative                                            |                                                                      |             |
| 4. | • <sup>6</sup> is or<br>the wo | nly ava<br>rds 'c | ailable where a candidate calculates va<br>ement' and 'gravel' along with the cor | alues for $c$ and $g$ , and a conclusion concert units in both cases | ntaining    |
| Со | mmonly                         | v obse            | rved responses:                                                                   |                                                                      |             |
|    |                                |                   |                                                                                   |                                                                      |             |

| Question          |                                                                                                                                                                                                                                                                               | on   | Generic scheme                                    | Illustrative scheme    | Max<br>mark |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------|------------------------|-------------|--|
| 9.                | (a)                                                                                                                                                                                                                                                                           |      | • <sup>1</sup> state equation of axis of symmetry | • <sup>1</sup> $x = 4$ | 1           |  |
|                   | <b>Notes:</b><br>1. For an answer of 4 or axis of symmetry $= 4$                                                                                                                                                                                                              |      | r of 4 or axis of symmetry $=$ 4                  | award 0/1              |             |  |
|                   | (b)                                                                                                                                                                                                                                                                           | (i)  | $\bullet^2$ state the value of $a$                | • <sup>2</sup> -4      | 1           |  |
| Note              | s:                                                                                                                                                                                                                                                                            |      |                                                   |                        |             |  |
|                   |                                                                                                                                                                                                                                                                               | (ii) | $\bullet^3$ state the value of b                  | • <sup>3</sup> 20      | 1           |  |
| 1. F<br>2. F<br>T | Notes:<br>1. For an answer of $y = 20 - (x-4)^2$ award 1/1 for (i) and 1/1 for (ii)<br>2. For answers of (i) 20 and (ii) -4 award 0/1 for (i) and 1/1 for (ii)<br>This note only applies where the "correct" answers have been switched<br>3. Mark (b) independently from (a) |      |                                                   |                        |             |  |

| Q    | Question                                                                                                                                                       |  | Generic scheme                | Illustrative scheme                            | Max<br>mark |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------|------------------------------------------------|-------------|--|--|--|
| 10.  | (a)                                                                                                                                                            |  | • <sup>1</sup> correct answer | $\bullet^1 \begin{pmatrix} 5\\4 \end{pmatrix}$ | 1           |  |  |  |
| Note | Notes:                                                                                                                                                         |  |                               |                                                |             |  |  |  |
| (    | <ol> <li>Award 0/1 where:         <ul> <li>(a) brackets are omitted from the answer</li> <li>(b) the answer is given in coordinate form</li> </ul> </li> </ol> |  |                               |                                                |             |  |  |  |
|      | . (a) Treat $\left(\frac{5}{4}\right)$ as bad form award 1/1                                                                                                   |  |                               |                                                |             |  |  |  |
| (    | (b) However, for $\frac{5}{4}$ award 0/1                                                                                                                       |  |                               |                                                |             |  |  |  |
| Com  | Commonly observed responses:                                                                                                                                   |  |                               |                                                |             |  |  |  |

| Ques                 | stion                                                                                                                       | Generic scheme                                                                                                                                                           | Illustrative scheme                                                                                                                                                | Max<br>mark |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| (b)                  | ))                                                                                                                          | • <sup>2</sup> valid pathway                                                                                                                                             | • <sup>2</sup> $\frac{1}{2}\overrightarrow{PR} + \overrightarrow{RQ} \text{ or } \frac{1}{2}\begin{pmatrix}6\\-4\end{pmatrix} + \begin{pmatrix}-1\\8\end{pmatrix}$ | 2           |  |  |
|                      |                                                                                                                             |                                                                                                                                                                          | OR $\frac{1}{2}\overrightarrow{RP} + \overrightarrow{PQ}$ or $\frac{1}{2}\binom{-6}{4} + \binom{5}{4}$                                                             |             |  |  |
|                      |                                                                                                                             | • <sup>3</sup> consistent components                                                                                                                                     | $\bullet^3 \begin{pmatrix} 2 \\ 6 \end{pmatrix}$                                                                                                                   |             |  |  |
| Notes:               |                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                    |             |  |  |
| 1. Corr              | rect ans                                                                                                                    | wer without working                                                                                                                                                      | award 2/2                                                                                                                                                          |             |  |  |
|                      |                                                                                                                             | alise the omission of brackets or giving t<br>n penalised in part (a)                                                                                                    | he answer in coordinate form if this has                                                                                                                           | ;           |  |  |
| 3. MR -              | +RQ or                                                                                                                      | $\overrightarrow{MP} + \overrightarrow{PQ}$ alone is not enough for the aw                                                                                               | vard of $\bullet^2$                                                                                                                                                |             |  |  |
| 4. If ca             | andidate                                                                                                                    | e's response for (a) is $\overrightarrow{PR} - \overrightarrow{RQ} = \begin{pmatrix} 6 \\ -4 \end{pmatrix} - \begin{pmatrix} -6 \\ -4 \end{pmatrix}$                     | $\binom{-1}{8} = \binom{7}{-12}$ then accept                                                                                                                       |             |  |  |
| (a) [                | $\frac{1}{2}\overrightarrow{PR}-\overrightarrow{R}$                                                                         | $\vec{Q} = \left] \frac{1}{2} \begin{pmatrix} 6 \\ -4 \end{pmatrix} - \begin{pmatrix} -1 \\ 8 \end{pmatrix} = \begin{pmatrix} 4 \\ -10 \end{pmatrix} \right]$            | award 2/2                                                                                                                                                          |             |  |  |
| L L                  |                                                                                                                             | $\vec{Q} = \left] \frac{1}{2} \begin{pmatrix} -6 \\ 4 \end{pmatrix} + \begin{pmatrix} 7 \\ -12 \end{pmatrix} = \begin{pmatrix} 4 \\ -10 \end{pmatrix} \right]$           | award 2/2                                                                                                                                                          |             |  |  |
| (c)                  | $\frac{1}{2} \overrightarrow{RP} - \overrightarrow{P}$                                                                      | $\vec{\mathbf{Q}} = \left] \frac{1}{2} \begin{pmatrix} -6 \\ 4 \end{pmatrix} - \begin{pmatrix} 7 \\ -12 \end{pmatrix} = \begin{pmatrix} -10 \\ 14 \end{pmatrix} \right]$ | award 2/2                                                                                                                                                          |             |  |  |
| 5. Whe               | ere there                                                                                                                   | e is invalid subsequent working $\bullet^3$ is not                                                                                                                       | available                                                                                                                                                          |             |  |  |
| eg(                  | $\operatorname{eg} \begin{pmatrix} 2\\ 6 \end{pmatrix} = \begin{pmatrix} 1\\ 3 \end{pmatrix}$ award 1/2 $\checkmark \times$ |                                                                                                                                                                          |                                                                                                                                                                    |             |  |  |
| Commo                | Commonly observed responses:                                                                                                |                                                                                                                                                                          |                                                                                                                                                                    |             |  |  |
| 1. (a) $\frac{1}{2}$ | $\left[ \begin{pmatrix} 6 \\ -4 \end{pmatrix} \right] +$                                                                    | $ \begin{pmatrix} -1 \\ 8 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} + \begin{pmatrix} -1 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} $         | award 1/2 √×                                                                                                                                                       |             |  |  |
| (b)                  | $\begin{pmatrix} 3 \\ -4 \end{pmatrix} +$                                                                                   | $ \begin{pmatrix} -1 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} $                                                                                         | award 0/2                                                                                                                                                          |             |  |  |
|                      |                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                    |             |  |  |

| Question |                                                                                                                                                                        | estion           | Generic scheme                                                                  | Illustrative scheme                            | Max<br>mark |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|------------------------------------------------|-------------|--|
| 11       | •                                                                                                                                                                      |                  | • <sup>1</sup> find angle AOB                                                   | • <sup>1</sup> 72                              | 3           |  |
|          |                                                                                                                                                                        |                  | • <sup>2</sup> find angle FOB or ABO                                            | • <sup>2</sup> 108 or 54                       |             |  |
|          |                                                                                                                                                                        |                  | • <sup>3</sup> find angle OFB                                                   | • <sup>3</sup> 36                              |             |  |
| No       | tes:                                                                                                                                                                   |                  |                                                                                 |                                                | I           |  |
| 1.       | 1. Correct answer without relevant working award 0/3.                                                                                                                  |                  |                                                                                 |                                                |             |  |
| 2.       | Deg                                                                                                                                                                    | grees signs      | s are not required.                                                             |                                                |             |  |
| 3.       | ●² is                                                                                                                                                                  | s only ava       | ilable where angle AOB is acute.                                                |                                                |             |  |
| 4.       | Full                                                                                                                                                                   | l marks m        | ay be awarded for information marked                                            | on the diagram.                                |             |  |
| 5.       |                                                                                                                                                                        |                  | ise a candidate who marks the correct<br>wer outwith the diagram.               | answer on the diagram but then writes          | an          |  |
| 6.       | Acc                                                                                                                                                                    | ept <b>clear</b> | working outwith the diagram, but the                                            | final answer must be <b>clearly</b> indicated. | ,           |  |
| 7.       | An a                                                                                                                                                                   | answer of        | 360 ÷ 5 = 72 alone is not enough for th                                         | e award of •1.                                 |             |  |
| 8.       | 8. Alternative method<br>eg $\bullet^1 EAB = 108$ (interior angle of pentagon)<br>$\bullet^2 ABO = 54$ (OAB = ABO)<br>$\bullet^3 OFB = 36$ (OBF = 90 - ABO; OFB = OBF) |                  |                                                                                 |                                                |             |  |
|          | Commonly observed responses:                                                                                                                                           |                  |                                                                                 |                                                |             |  |
| 1.       | • •                                                                                                                                                                    | AOR = 60         | $\rightarrow$ FOB = 120 $\rightarrow$ OFB = 30                                  | award $2/3 \times \sqrt{}$                     |             |  |
|          | (b)<br>(c)                                                                                                                                                             | AOB = 90         | $FOB = 120 \rightarrow OFB = 30$<br>$\rightarrow FOB = 90 \rightarrow OFB = 45$ | award 1/3 ××√<br>award 1/3 ××√                 |             |  |

| Question        | Generic scheme                                                                                      | Illustrative scheme                                                     | Max<br>mark |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|--|--|--|
| 12.             | Method 1                                                                                            |                                                                         | 3           |  |  |  |
|                 | • <sup>1</sup> express as equivalent fraction<br>with rational denominator                          | • $\frac{\sqrt{2}\sqrt{40}}{40}$ or $\frac{\sqrt{80}}{40}$              |             |  |  |  |
|                 | • <sup>2</sup> express numerator in simplest form                                                   | $\bullet^2 \frac{4\sqrt{5}}{40}$                                        |             |  |  |  |
|                 | • <sup>3</sup> express in simplest form                                                             | $\bullet^3 \frac{\sqrt{5}}{10}$                                         |             |  |  |  |
|                 | Method 2                                                                                            | $\sqrt{2}$                                                              |             |  |  |  |
|                 | • <sup>1</sup> express denominator in simplest form                                                 | • $\frac{\sqrt{2}}{2\sqrt{10}}$ or ${2\sqrt{10}}$                       |             |  |  |  |
|                 | • <sup>2</sup> express as equivalent fraction with rational denominator                             | • <sup>2</sup> $\frac{\sqrt{2}\sqrt{10}}{20}$ or $\frac{\sqrt{20}}{20}$ |             |  |  |  |
|                 | • <sup>3</sup> express in simplest form                                                             | $\bullet^3 \frac{\sqrt{5}}{10}$                                         |             |  |  |  |
|                 | Method 3                                                                                            | 1                                                                       |             |  |  |  |
|                 | • <sup>1</sup> correct division                                                                     | • <sup>1</sup> $\frac{1}{\sqrt{20}}$                                    |             |  |  |  |
|                 | • <sup>2</sup> express denominator in simplest form                                                 | $\bullet^2 \frac{1}{2\sqrt{5}}$                                         |             |  |  |  |
|                 | • <sup>3</sup> express as equivalent fraction with rational denominator                             | $\bullet^3 \frac{\sqrt{5}}{10}$                                         |             |  |  |  |
| Notes:          |                                                                                                     |                                                                         |             |  |  |  |
| 1. Correct answ | er with no working                                                                                  | award 0/3                                                               |             |  |  |  |
| 2. For subseque | For subsequent incorrect working $\bullet^3$ is not available eg $\frac{\sqrt{5}}{1} = \frac{1}{1}$ |                                                                         |             |  |  |  |

2. For subsequent incorrect working •<sup>3</sup> is not available eg  $\frac{\sqrt{5}}{10} = \frac{1}{2}$ 

3. Method 2: Accept 
$$\frac{1\sqrt{2}}{2\sqrt{10}}$$
 for the award of  $\bullet^1$ 

eg (a) Method 2 then Method 3: 
$$\frac{\sqrt{2}}{2\sqrt{10}} = \frac{1}{2\sqrt{5}} = \frac{\sqrt{5}}{10}$$
  
(b) Method 3 then Method 2:  $\frac{1}{\sqrt{20}} = \frac{\sqrt{20}}{20} = \frac{\sqrt{5}}{10}$ 

Commonly observed responses:

| Question                     |                                                                                                                                                                                       | Generic scheme                            | Illustrative scheme                           | Max<br>mark |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------|--|--|
| 13.                          | <b>13.</b> • <sup>1</sup> state <i>x</i> -coordinate                                                                                                                                  |                                           | • <sup>1</sup> (135,)<br>• <sup>2</sup> (,-3) | 2           |  |  |
|                              |                                                                                                                                                                                       | • <sup>2</sup> state <i>y</i> -coordinate | • <sup>2</sup> (, -3)                         |             |  |  |
|                              | Notes:<br>1. For $x = 135$ , $y = -3$                                                                                                                                                 |                                           | award 2/2                                     |             |  |  |
| (7                           | <ul> <li>Award 1/2 where brackets are omitted unless</li> <li>(a) answer in form shown in Note 1 above</li> <li>(b) omission of brackets has already been penalised in Q10</li> </ul> |                                           |                                               |             |  |  |
| (c) For (-3, 135)            |                                                                                                                                                                                       | 135)                                      | award 1/2                                     |             |  |  |
| Commonly observed responses: |                                                                                                                                                                                       |                                           |                                               |             |  |  |
|                              |                                                                                                                                                                                       |                                           |                                               |             |  |  |

| Q             | uestion                                                                     | Generic scheme                                                                                                      | Illustrative scheme                                   | Max<br>mark |  |
|---------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|--|
| 14.           |                                                                             | Method 1<br>•1 eliminate denominators                                                                               | Method 1<br>• <sup>1</sup> $5x-10=6-2x$ or equivalent | 3           |  |
|               |                                                                             | • <sup>2</sup> rearrange into form $ax = b$                                                                         | • <sup>2</sup> $7x = 16$                              |             |  |
|               |                                                                             | • <sup>3</sup> solve for $x$                                                                                        | $\bullet^3  x = \frac{16}{7}$                         |             |  |
|               |                                                                             | Method 2<br>•1 collect algebraic terms and<br>express as a fraction in simplest<br>form                             | Method 2<br>• $\frac{7x-6}{10} = 1$ or equivalent     |             |  |
|               |                                                                             | • <sup>2</sup> rearrange into form $ax = b$                                                                         | • <sup>2</sup> $7x = 16$                              |             |  |
|               |                                                                             | • <sup>3</sup> solve for $x$                                                                                        | $\bullet^3  x = \frac{16}{7}$                         |             |  |
| Note<br>1. Co |                                                                             | ver without working                                                                                                 | award 0/3                                             |             |  |
| 2. Ac         | cept $5x-1$                                                                 | $0 = 2(3-x)$ for the award of $\bullet^1$                                                                           |                                                       |             |  |
| 3. Fo         | r the awar                                                                  | d of $\bullet^3$ the answer must be a non-intege                                                                    | r value                                               |             |  |
| 4. D          | o not awar                                                                  | not award $\bullet^3$ for a decimal approximation to $\frac{16}{7}$ , but do not penalise incorrect conversion to a |                                                       |             |  |
| m             | mixed number or decimal approximation following an answer of $\frac{16}{7}$ |                                                                                                                     |                                                       |             |  |
|               | -                                                                           | erved responses:<br>$x \rightarrow 7x = 7 \rightarrow x = 1$                                                        | award 1/3 ×√×                                         |             |  |

| Q    | uestio                                                                                             | n      | Generic scheme                                                                                      | Illustrative scheme                                       | Max<br>mark |  |  |
|------|----------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|--|--|
| 15.  | (a)                                                                                                |        | • <sup>1</sup> calculate height                                                                     | • <sup>1</sup> $(12 \times 2 - 5 \times 2^2 =) 4(m)$      |             |  |  |
|      | (b)                                                                                                |        | • <sup>2</sup> construct equation                                                                   | • <sup>2</sup> $12t - 5t^2 = -17$                         | 4           |  |  |
|      |                                                                                                    |        | • <sup>3</sup> rearrange and equate to zero                                                         | • <sup>3</sup> eg $5t^2 - 12t - 17 = 0$                   |             |  |  |
|      |                                                                                                    |        | • <sup>4</sup> consistent factorisation                                                             | • <sup>4</sup> $(5t-17)(t+1) (=0)$                        |             |  |  |
|      |                                                                                                    |        | <ul> <li><sup>5</sup> solve equation and select correct<br/>value</li> </ul>                        | • <sup>5</sup> $(t=)\frac{17}{5}$ (seconds) or equivalent |             |  |  |
| Note |                                                                                                    |        |                                                                                                     |                                                           |             |  |  |
| 1. C | Correct                                                                                            | answ   | er without working                                                                                  | award 0/4                                                 |             |  |  |
| 2. F | or a so                                                                                            | lutio  | n obtained by guess and check                                                                       | award 0/4                                                 |             |  |  |
| 3. • | <sup>3</sup> is ava                                                                                | ilable | e for eg $12t - 5t^2 + 17 = 0$                                                                      |                                                           |             |  |  |
| 4. C | o not p                                                                                            | penal  | ise incorrect conversion of answer to a                                                             | decimal or mixed number                                   |             |  |  |
| 5. • | <sup>4</sup> is ava                                                                                | ilable | e for eg $\frac{12 \pm \sqrt{\left(-12\right)^2 - 4 \times 5 \times \left(-17\right)}}{2 \times 5}$ |                                                           |             |  |  |
| 6. V | Vhere c                                                                                            | candio | date finds two positive roots or two ne                                                             | gative roots, then $ullet^5$ is not available             |             |  |  |
|      | -                                                                                                  |        | rved responses:                                                                                     |                                                           |             |  |  |
|      | $2t - 5t^2$                                                                                        |        | x• <sup>2</sup>                                                                                     |                                                           |             |  |  |
|      | $5t^{2} - 12t + 17 = 0 \qquad \checkmark \bullet^{3}$<br>(5t - 17)(t + 1) = 0 $\times \bullet^{4}$ |        |                                                                                                     |                                                           |             |  |  |
| Ì    | $t = \frac{17}{5}, -1$                                                                             |        |                                                                                                     |                                                           |             |  |  |
|      | 0                                                                                                  | -      |                                                                                                     |                                                           |             |  |  |
| t    | $=\frac{17}{5}$                                                                                    |        | <b>√</b> ● <sup>5</sup>                                                                             |                                                           |             |  |  |

### [END OF MARKING INSTRUCTIONS]



# 2019 Mathematics

### National 5 - Paper 2

# Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.



#### General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example  $6 \times 6 = 12$ , candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example



The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.  $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 or 3

#### (i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
  - $\frac{15}{12}$  must be simplified to  $\frac{5}{4}$  or  $1\frac{1}{4}$  $\frac{43}{1}$  must be simplified to 43 $\frac{15}{0\cdot 3}$  must be simplified to 50 $\frac{\frac{4}{5}}{3}$  must be simplified to  $\frac{4}{15}$  $\sqrt{64}$  must be simplified to 8\*

\*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
  - working subsequent to a correct answer
  - correct working in the wrong part of a question
  - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
  - omission of units
  - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$  written as  $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$   $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

| Strategy 1 attempt 1 is worth 3 marks.                             | Strategy 2 attempt 1 is worth 1 mark.                              |
|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Strategy 1 attempt 2 is worth 4 marks.                             | Strategy 2 attempt 2 is worth 5 marks.                             |
| From the attempts using strategy 1, the resultant mark would be 3. | From the attempts using strategy 2, the resultant mark would be 1. |

For example:

In this case, award 3 marks.

#### Marking instructions for each question

|    | Question                    | Generic scheme                                                                                          | Illustrative scheme                         | Max<br>mark |
|----|-----------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|
| 1. |                             | • <sup>1</sup> know how to increase by 15%                                                              | • <sup>1</sup> ×1·15                        | 3           |
|    |                             | <ul> <li>know how to calculate number of<br/>packages after 3 years</li> </ul>                          | • <sup>2</sup> 80 000 × 1 · 15 <sup>3</sup> |             |
|    |                             | • <sup>3</sup> evaluate                                                                                 | • <sup>3</sup> 121 670                      |             |
|    | t <b>es:</b><br>Correct ans | wer without working                                                                                     | award 3/3                                   |             |
| 2. |                             | ncorrect percentage is used, the working<br>of awarding 2/3                                             | must be followed through to give the        |             |
|    | eg 80 000×                  | $0.15^3 = 270$                                                                                          | award 2/3 ×√√                               |             |
| 3. |                             | ncorrect power ( $\geq 2$ ) is used, the workin of awarding 2/3                                         | g must be followed through to give the      |             |
|    | eg 80 000×                  | $1.15^2 = 105\ 800$ , $80\ 000 \times 1.15^4 = 139\ 920$                                                | •5) or 139 921 award 2/3 √×√                |             |
| 4. | Where divis<br>(a) along w  | iion is used<br>ith 1·15, ● <sup>1</sup> is not available                                               |                                             |             |
|    |                             | $000 \div 1.15^3 = 52601(.2)$                                                                           | award 2/3 ×√√                               |             |
|    |                             | ith an incorrect percentage, $\bullet^1$ and $\bullet^2$ ar<br>$000 \div 0.85^3 = 130266(.6)$ or 130266 | e not available<br>award 1/3 ××√            |             |
| Со | nmonly obs                  | erved responses:                                                                                        |                                             |             |
| 1. | 80 000×1·0                  | 115 <sup>3</sup> = 83654(·27)                                                                           | award 2/3 ×√√                               |             |
| 2. | 80 000×0·                   | $85^3 = 49130$                                                                                          | award 2/3 ×√√                               |             |
| 3. | 80 000×1·1                  | 5 = 92 000                                                                                              | award 1/3 √××                               |             |
| 4. | 80 000 × 1·1                | 5 × 3 = 276 000                                                                                         | award 1/3 √××                               |             |
| 5. | 80 000 × 0·1                | $5 = 12\ 000 \rightarrow 80\ 000 + 3 \times 12\ 000 = 116\ 000$                                         | award 1/3 √××                               |             |
| 6. | 80 000 × 0·                 | 5×3 = 36 000                                                                                            | award 0/3                                   |             |

| Question                                                                                                                                        | Generic scheme                                                                                    | Illustrative scheme                                              | Max<br>mark |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|--|--|
| 2.                                                                                                                                              | • <sup>1</sup> start process                                                                      | • <sup>1</sup> $6^2 + 27^2 + (-18)^2$                            | 2           |  |  |
|                                                                                                                                                 | • <sup>2</sup> consistent solution                                                                | • <sup>2</sup> 33                                                |             |  |  |
|                                                                                                                                                 | ver without working,<br>$27^2 + 18^2$ for the award of $\bullet^1$                                | award 2/2                                                        |             |  |  |
| 3. For a solution of $21(\sqrt{6^2 + 27^2 - 18^2})$ , with or without working, award 1/2                                                        |                                                                                                   |                                                                  |             |  |  |
| 4. For eg $\sqrt{6^2}$                                                                                                                          | $\overline{(-(-18)^2)^2} = \sqrt{360} = 18.97$ or $6\sqrt{10}$                                    | award 0/2                                                        |             |  |  |
| 5. For eg $\frac{\sqrt{6^2}}{3}$                                                                                                                | $\frac{\overline{+27^2 + (-18)^2}}{2 \times 6 \times 27} = \frac{33}{324} = \frac{11}{108} = 0.1$ | award 0/2                                                        |             |  |  |
| Commonly Obse<br>No working nec                                                                                                                 | erved Responses:<br>essary                                                                        |                                                                  |             |  |  |
| 1. √1089 or 108                                                                                                                                 | 39                                                                                                | award 1/2 √×                                                     |             |  |  |
| 3.                                                                                                                                              | • <sup>1</sup> correct substitution into area of triangle formula                                 | • <sup>1</sup> $\frac{1}{2} \times 45 \times 70 \times \sin 129$ | 2           |  |  |
|                                                                                                                                                 | • <sup>2</sup> calculate area                                                                     | • <sup>2</sup> 1224(·004)(cm <sup>2</sup> )                      |             |  |  |
| Notes:<br>1. Correct answ                                                                                                                       | ver without working                                                                               | award 2/2                                                        |             |  |  |
| 2. For 45×70>                                                                                                                                   | <sin129 2448(·0…)<="" =="" td=""><td>award 1/2 ×√</td><td></td></sin129>                          | award 1/2 ×√                                                     |             |  |  |
| 3. Inappropriate use of RAD or GRAD should only be penalised once in Qu 3, 7, 11, 14 or 19                                                      |                                                                                                   |                                                                  |             |  |  |
| (a) $\pm 304.7$ (RAD) [no working necessary]award $1/2 \checkmark \times$ (b) 1414.3 (GRAD) [no working necessary]award $1/2 \checkmark \times$ |                                                                                                   |                                                                  |             |  |  |
|                                                                                                                                                 |                                                                                                   |                                                                  |             |  |  |
| 4. Where cosine rule is used award 0/2 Commonly observed responses:                                                                             |                                                                                                   |                                                                  |             |  |  |
| -                                                                                                                                               | sin129 = $\sqrt{1224 \cdot \ldots}$ = 34 · 9                                                      | award 1/2                                                        |             |  |  |

| Ques         | stion                                                                                       |                    | Generic scheme                                                                       | Illustrative scheme                                           | Max<br>mark |
|--------------|---------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|
| 4.           |                                                                                             |                    | • <sup>1</sup> correct method                                                        | • <sup>1</sup> $0.08 \times 3.6 \times 10^{-6}$ or equivalent | 2           |
|              |                                                                                             |                    | • <sup>2</sup> answer                                                                | • <sup>2</sup> 2.88×10 <sup>-7</sup> (kg)                     |             |
| Note<br>1. C | -                                                                                           | t answ             | ver without working                                                                  | award 2/2                                                     |             |
| 2. A         | ccept                                                                                       | 2•9×               | 10 <sup>-7</sup> (no working necessary)                                              | award 2/2                                                     |             |
| 3. A         | ccept                                                                                       | 100%               | $= 3 \cdot 6 \times 10^{-6} \rightarrow 1\% = \dots \rightarrow 8\% = \dots$ for the | he award of $\bullet^1$                                       |             |
| 4. F         | or 0.0                                                                                      | 00000              | 0288 or $\frac{9}{31250\ 000}$ (no working necess                                    | ary) award 1/2 √×                                             |             |
| 5. F         | or (0                                                                                       | •08×3              | $3 \cdot 6 = 0 \cdot 288 \rightarrow 0 \cdot 288 \times 10^{-6}$ (no working         | g necessary) award 1/2 √×                                     |             |
|              |                                                                                             |                    | e for correctly carrying out calculation<br>a change in the power of 10; the answ    |                                                               | ientific    |
| Com          | monly                                                                                       | obse               | rved responses:                                                                      |                                                               |             |
| 1.           | 0.08                                                                                        | ×3.6               | $\times 10^{-6} = 2 \cdot 8 \times 10^{-7}$                                          | award 1/2 √×                                                  |             |
| 2.           | 2. $0.08 \times 3600000 = 2.88 \times 10^5$ award $1/2 \times \sqrt{2}$                     |                    |                                                                                      |                                                               |             |
| 3.           | 3. $3 \cdot 6 \times 10^{-6} \div 8 = 4 \cdot 5 \times 10^{-7}$ award $1/2 \times \sqrt{2}$ |                    |                                                                                      |                                                               |             |
| . ,          |                                                                                             |                    | $\div 8\% = 4 \cdot 5 \times 10^{-5}$                                                | award 1/2 ×√                                                  |             |
| (b)          | <b>3.6</b> ⇒                                                                                | < 10 <sup>-6</sup> | $\div 8\% = 4 \cdot 5 \times 10^{-7}$                                                | award 0/2                                                     |             |

| Q                   | uestion                                 | Generic Scheme                                                                                                                                                  | Illustra                     | tive Scheme               | Max<br>Mark |
|---------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|-------------|
| 5.                  |                                         | • <sup>1</sup> state coordinates of A                                                                                                                           | •1 (3,0,0)                   |                           | 2           |
|                     |                                         | • <sup>2</sup> state coordinates of B                                                                                                                           | • <sup>2</sup> (3,3,8)       |                           |             |
| ar                  | ne maximun                              | n mark available is 1/2 where brac<br>viven in component form                                                                                                   | kets are omitted and         | /or                       |             |
|                     |                                         | ) and (3,3,8)<br>0) and A(3,3,8)                                                                                                                                |                              | award 2/2<br>award 1/2    |             |
| 3. Fc               | or eg (0,0,3)                           | and (8,3,3) [repeated error]                                                                                                                                    |                              | award 1/2                 |             |
|                     | <sup>2</sup> is availabl<br>ee COR 2.   | e for answers of the form A(x,0,0                                                                                                                               | $D) \rightarrow B(x, x, 8)$  |                           |             |
| (                   | a) Where bo<br>b) Where or<br>(i) award | ven in two dimensions<br>oth answers are given in 2D awar<br>ne answer is given in 2D and one ir<br>1/2 for the correct answer<br>through mark is not available | 1 3D<br>eg (3,0) and (3,3,8) |                           |             |
| <b>Com</b><br>1. (a | $\begin{pmatrix} 3 \end{pmatrix}$       | erved responses:<br>$\begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}$                                                                                                 |                              | award 1/2 ×√              |             |
| (b                  | ) 0 and                                 | 3<br>3<br>8                                                                                                                                                     |                              | award 1/2 ×√              |             |
| •                   | ) (6,0,0) an<br>) (6,0,0) an            |                                                                                                                                                                 |                              | award 1/2 ×√<br>award 0/2 |             |

| Q                   | uestion                                                                                                                                                           | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Illustrative scheme                                                  | Max<br>mark |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|
| 6.                  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • <sup>1</sup> $\frac{-9\pm\sqrt{9^2-4\times3\times(-2)}}{2\times3}$ | 3           |
|                     |                                                                                                                                                                   | • <sup>2</sup> evaluate discriminant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <sup>2</sup> 105 (stated or implied by • <sup>3</sup> )            |             |
|                     |                                                                                                                                                                   | • <sup>3</sup> calculate both roots correct to one decimal place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • <sup>3</sup> -3·2, 0·2                                             |             |
| <b>Note</b><br>1. ( |                                                                                                                                                                   | ver without working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | award 0/3                                                            |             |
| 2. •                | <sup>,3</sup> is only ava                                                                                                                                         | ailable when $b^2 - 4ac > 0$ , and the roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ts require rounding.                                                 |             |
|                     | monly observed by $(b^2 - 4a)$                                                                                                                                    | erved responses:<br>c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | award 1/3 ×√×                                                        |             |
| 2                   | $\frac{-9\pm\sqrt{9^2-2}}{2\times}$                                                                                                                               | $\frac{1}{3} \times (-2) = \frac{-9 \pm \sqrt{57}}{6} = -2 \cdot 8, -0 \cdot 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | award 2/3 √×√                                                        |             |
| 3                   | 3. $\frac{-9 \pm \sqrt{9^2 - 4 \times 3 \times 2}}{2 \times 3} = \frac{-9 \pm \sqrt{57}}{6} = -2 \cdot 8, -0 \cdot 2$ award 1/3 ××√                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |             |
| 4.                  | $\frac{-9 \pm \sqrt{9^2 - 4 \times 3 \times (-2)}}{2 \times 3} = \frac{-9 \pm \sqrt{105}}{6} = -10.7, -7.3 \qquad \text{award } 2/3 \checkmark \checkmark \times$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |             |
| 5                   | $-9\frac{\pm\sqrt{9^2-4}}{2}$                                                                                                                                     | $\frac{1}{1} \frac{1}{1} \frac{1}$ | •3 award 2/3 ×√√                                                     |             |

| (   | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Generic Scheme                                                                                                                                       | Illustrative Scheme                                                                                    | Max<br>Mark          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| 7.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • <sup>1</sup> correct substitution into cosine rule to find angle Z                                                                                 | • 1 $(\cos Z =)$ $\frac{7 \cdot 2^2 + 8 \cdot 5^2 - 6 \cdot 3^2}{2 \times 7 \cdot 2 \times 8 \cdot 5}$ | 3                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • <sup>2</sup> evaluate                                                                                                                              | • <sup>2</sup><br>$(\cos Z =) \frac{84 \cdot 4}{122 \cdot 4} \left( = \frac{211}{306} = 0.689 \right)$ |                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • <sup>3</sup> calculate angle                                                                                                                       | • $^{3}$ (Z =) 46 · 406                                                                                |                      |
| Not | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                        |                      |
| 1.  | Correct a                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nswer without working award 0/3                                                                                                                      |                                                                                                        |                      |
| 2.  | <ul> <li>Where two or three more angles are calculated correctly         <ul> <li>(a) all three angles are calculated correctly; 46·4 need not be identified</li> <li>(b) two angles are calculated correctly and 46·4 has been clearly identified</li> <li>(c) two angles are calculated correctly and 46·4 has NOT been clearly identified</li> <li>(c) two angles are calculated correctly and 46·4 has NOT been clearly identified</li> <li>(award 2/3 √√×</li> </ul> </li> </ul> |                                                                                                                                                      |                                                                                                        |                      |
| 3.  | Do not pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nalise omission of degrees sign                                                                                                                      |                                                                                                        |                      |
| 4.  | Disregard                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | errors due to premature rounding provide                                                                                                             | ed there is evidence                                                                                   |                      |
| 5.  | (a) 0·81.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iate use of RAD or GRAD should only be pe<br>(RAD)<br>(GRAD)                                                                                         | enalised once in Qu 3, 7, 11, 14 or 19                                                                 |                      |
| Cor | nmonly of                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oserved responses:                                                                                                                                   |                                                                                                        |                      |
| 1.  | $\frac{8\cdot 5^2 + 6\cdot 3}{2\times 8\cdot 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{3^2 - 7 \cdot 2^2}{8 \times 6 \cdot 3} \left( = \frac{60 \cdot 1}{107 \cdot 1} = \frac{601}{1071} = 0 \cdot 561 \right) \to 51$               | 5·86 award 2/3 ×√                                                                                      | <ul> <li></li> </ul> |
| 2.  | $\frac{7\cdot 2^2 + 6\cdot 2}{2\times 7\cdot 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{3^2 - 8 \cdot 5^2}{2 \times 6 \cdot 3} \left( = \frac{19 \cdot 28}{90 \cdot 72} = \frac{241}{1134} = 0 \cdot 212 \dots \right) \rightarrow 7$ | 77·72 award 2/3 ×√                                                                                     | <ul><li>✓</li></ul>  |
| 3.  | (cosZ =)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{7 \cdot 2^2 + 8 \cdot 5^2 - 6 \cdot 3^2}{2 \times 7 \cdot 2 \times 8 \cdot 5} = \sqrt{0 \cdot 689 \dots} \rightarrow Z = 33 \cdot 8$          | award 2/3 √×                                                                                           | ≪√                   |

| Q  | uestion | Generic Scheme                                                                                                                   | Illustrative Scheme                                                                            |   |
|----|---------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|
| 8. |         | • <sup>1</sup> correct substitution into formula for volume of sphere                                                            | $\bullet^1  \frac{4}{3} \times \pi \times 12^3$                                                | 5 |
|    |         | • <sup>2</sup> correct substitution into formula for volume of cylinder                                                          | • <sup>2</sup> $\pi \times 12^2 \times 58$                                                     |   |
|    |         | • <sup>3</sup> know to add volume of<br>hemisphere to volume of<br>cylinder                                                      | $\bullet^3  \frac{1}{2} \times \frac{4}{3} \times \pi \times 12^3 + \pi \times 12^2 \times 58$ |   |
|    |         | • <sup>4</sup> all calculations correct (must involve the sum or difference of two different calculations both involving $\pi$ ) | • ${}^{4}(3619\cdot1+26238\cdot5)=29857\cdot$                                                  |   |
|    |         | <ul> <li><sup>5</sup> round final answer to</li> <li>3 significant figures and state</li> <li>correct units</li> </ul>           | • <sup>5</sup> 29 900 cm <sup>3</sup>                                                          |   |

|    | Question                                                                                                                                                                                                                       | Generic scheme                                                                      | Illustrative scheme                                    | Max<br>mark |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|--|--|--|--|
|    | <b>tes:</b><br>Correct answ                                                                                                                                                                                                    | ver without working                                                                 | award 0/5                                              |             |  |  |  |  |
| 2. | Accept 29 900 ml or 29.9 litres                                                                                                                                                                                                |                                                                                     |                                                        |             |  |  |  |  |
|    | Accept variations in $\pi$<br>eg $\frac{1}{2} \times \frac{4}{3} \times 3.14 \times 12^3 + 3.14 \times 12^2 \times 58 = 29842.56 = 29800 \text{ cm}^3$                                                                         |                                                                                     |                                                        |             |  |  |  |  |
| 4. | • <sup>5</sup> is not available if final answer is given in terms of $\pi$<br>eg $\frac{2}{3} \times \pi \times 12^3 + \pi \times 12^2 \times 58 = 1152\pi + 8352\pi = 9504\pi$ cm <sup>3</sup> award 4/5 $\sqrt[4]{\sqrt{3}}$ |                                                                                     |                                                        |             |  |  |  |  |
| 5. | In awarding (<br>(a) Intermed                                                                                                                                                                                                  | <sup>5</sup><br>iate calculations need not be shown                                 |                                                        |             |  |  |  |  |
|    | eg $\frac{1}{2} \times \frac{2}{3}$                                                                                                                                                                                            | $\frac{4}{3} \times \pi \times 12^3 + \pi \times 12^2 \times 58 = 29900\text{cm}^3$ | award 5/5                                              |             |  |  |  |  |
|    |                                                                                                                                                                                                                                | termediate calculations are shown, the our significant figures                      | y must involve                                         |             |  |  |  |  |
|    | eg 3619                                                                                                                                                                                                                        | 0·1 + 26238·5 = 3620+26200 = 298                                                    | $20 = 29800 \mathrm{cm}^3$ award $4/5 \sqrt{\sqrt{x}}$ |             |  |  |  |  |
|    | -                                                                                                                                                                                                                              | rved responses:<br>$4^3 + \pi \times 24^2 \times 58 = 134000  \text{cm}^3$          | award 4/5 ×√√√√                                        |             |  |  |  |  |
| 2. | $\frac{1}{2} \times \frac{4}{3} \times \pi \times 24$                                                                                                                                                                          | $4^2 + \pi \times 24^2 \times 58 = 106000\text{cm}^3$                               | award 4/5 ×√√√√                                        |             |  |  |  |  |
| 3. | $\frac{1}{2} \times \frac{4}{3} \times \pi \times 12$                                                                                                                                                                          | $2^3 + \pi \times 12^2 \times 70 = 35300\text{cm}^3$                                | award 4/5 🗸 × ✓ ✓ ✓                                    |             |  |  |  |  |
| 4. | $\frac{1}{2} \times \frac{4}{3} \times \pi \times 24$                                                                                                                                                                          | $4^3 + \pi \times 24^2 \times 70 = 156000\text{cm}^3$                               | award 3/5 ××√√√                                        |             |  |  |  |  |
| 5. | $\frac{4}{3}$ × $\pi$ × 12 <sup>3</sup> +                                                                                                                                                                                      | $\pi \times 12^2 \times 58 = 33500  \text{cm}^3$                                    | award 4/5 🗸 🗸 🗸                                        |             |  |  |  |  |
| 6. | $\frac{1}{2} \times \frac{4}{3} \times \pi \times 12$                                                                                                                                                                          | $2^3 + \pi \times 24 \times 58 = 7990  \text{cm}^3$                                 | award 4/5 🗸 × 🗸 🗸                                      |             |  |  |  |  |
| 7. | $\frac{4}{3}$ × $\pi$ × 12 <sup>3</sup> =                                                                                                                                                                                      | 7240 cm <sup>3</sup>                                                                | award 2/5 √×××√                                        |             |  |  |  |  |
| 8. | $\frac{1}{2} \times \frac{4}{3} \times \pi \times 12$                                                                                                                                                                          | $2^3 = 3620  \text{cm}^3$                                                           | award 2/5 √×××√                                        |             |  |  |  |  |
| 9. | $\pi \times 12^2 \times 58 =$                                                                                                                                                                                                  | <sup>2</sup> 26 200 cm <sup>3</sup>                                                 | award 2/5 ×√××√                                        |             |  |  |  |  |

| Question  |                                                                                                                                                                                     | Generic scheme                                                        | Illustrative scheme                  |                                  | Max<br>mark |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|----------------------------------|-------------|
| 9.        |                                                                                                                                                                                     | • <sup>1</sup> know that $102 \cdot 5\% = \text{\pounds}977 \cdot 85$ | • <sup>1</sup> 102 · 5(%) = 977 · 85 |                                  | 3           |
|           |                                                                                                                                                                                     | • <sup>2</sup> begin valid strategy                                   | • <sup>2</sup>                       | 977 • 85 ÷ 102 • 5 or equivalent |             |
|           |                                                                                                                                                                                     | • <sup>3</sup> complete calculation within valid strategy             | • <sup>3</sup>                       | (£)23·85                         |             |
| Not<br>1. | -                                                                                                                                                                                   | ver without working award 3/3                                         |                                      |                                  |             |
| 2.        | 2. $2 \cdot 5\%$ of $977 \cdot 85 = 24 \cdot 45$ award $1/3 \checkmark \times \times$ (a) and evidence of $\bullet^1$ award $1/3 \checkmark \times \times$ (b) otherwiseaward $0/3$ |                                                                       |                                      |                                  |             |
| 3.        | <ul> <li>3. 97.5% of 977.85=953.40</li> <li>(a) and evidence of ●<sup>1</sup></li> <li>(b) otherwise</li> <li>(c) award 1/3 √××</li> <li>(c) award 0/3</li> </ul>                   |                                                                       |                                      |                                  |             |
|           | Commonly observed responses:<br>1. $\frac{977 \cdot 85}{1 \cdot 025} = 954$                                                                                                         |                                                                       |                                      | award 2/3 √√×                    |             |
| 2.        | (a) $97.5\% = 977.85 \rightarrow \frac{977.85}{0.975} = 1002.92$ award 1/3 × $\checkmark$ ×                                                                                         |                                                                       |                                      |                                  |             |
|           | (b) $\frac{977 \cdot 85}{0 \cdot 975}$ =                                                                                                                                            | ₌1002 · 92                                                            |                                      | award 0/3                        |             |
| 3.        | (a) $2 \cdot 5\% = 97$                                                                                                                                                              | $77.85 \rightarrow \frac{977.85}{0.025} = 39114$                      |                                      | award 1/3 ×√×                    |             |
|           | (b) $\frac{977 \cdot 85}{0 \cdot 025}$ =                                                                                                                                            | =39114                                                                |                                      | award 0/3                        |             |

| Question     |                                                           | 1                  | Generic scheme                             | Illustrative scheme                  | Max<br>mark |  |
|--------------|-----------------------------------------------------------|--------------------|--------------------------------------------|--------------------------------------|-------------|--|
| 10.          |                                                           |                    | • <sup>1</sup> correct bracket with square | • $(x+5)^2 \dots$<br>• $(x5)^2 - 40$ | 2           |  |
|              |                                                           |                    | • <sup>2</sup> complete process            | • <sup>2</sup> $(x5)^2 - 40$         |             |  |
| Note<br>1. C | -                                                         | answ               | er without working award 2/2               |                                      |             |  |
| 2. A         | nswer f                                                   | for • <sup>2</sup> | $^2$ must be consistent with $ullet^1$     |                                      |             |  |
| e            | eg (a) (.                                                 | x±1                | $0)^{2}-115$                               | award 1/2 × $\checkmark$             |             |  |
|              | (b) (                                                     | $(x\pm 1)$         | $0)^{2} - 40$                              | award 0/2                            |             |  |
| Com          | monly o                                                   | obse               | rved responses:                            |                                      |             |  |
| No w         | orking                                                    | nece               | essary.                                    |                                      |             |  |
| 1. A         | 1. Award 2/2 for (a) $(x+5)^2 + (-40)$ or $(x+5)^2 + -40$ |                    |                                            |                                      |             |  |
|              | (b) $(x+5)(x+5)-40$                                       |                    |                                            |                                      |             |  |
| 2. A         | 2. Award 1/2 × $\checkmark$ for (a) $(x\pm 5)-40$         |                    |                                            |                                      |             |  |
|              |                                                           |                    | (b) $(x^2 \pm 5) - 40$                     |                                      |             |  |
|              |                                                           |                    | (c) $(x^2 \pm 5)^2 - 40$                   |                                      |             |  |
|              | (d) $(x \pm 5x)^2 - 40$                                   |                    |                                            |                                      |             |  |

| Q   | uestion | Generic scheme                                                                                                                      | Illustrative scheme                                                               | Max<br>mark |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|
| 11. |         | Method 1                                                                                                                            | Method 1                                                                          | 4           |
|     |         | <ul> <li>use perimeter to find length of<br/>BC and use a valid strategy<br/>(Converse of Pythagoras'<br/>Theorem)</li> </ul>       | • <sup>1</sup> eg $600^2 + 250^2$ and $650^2$                                     |             |
|     |         | • <sup>2</sup> evaluate                                                                                                             | • <sup>2</sup> $600^2 + 250^2 = 422500$ and $650^2 = 422500$                      |             |
|     |         | • <sup>3</sup> explicit comparison                                                                                                  | • <sup>3</sup> $600^2 + 250^2 = 650^2$                                            |             |
|     |         | • <sup>4</sup> conclusion with valid reason                                                                                         | • <sup>4</sup> Yes, as angle is a right angle.                                    |             |
|     |         | Method 2                                                                                                                            | Method 2                                                                          |             |
|     |         | <ul> <li>use perimeter to find length of<br/>BC and use a valid strategy<br/>(correct substitution into cosine<br/>rule)</li> </ul> | • <sup>1</sup> $(\cos B =) \frac{600^2 + 250^2 - 650^2}{2 \times 600 \times 250}$ |             |
|     |         | • <sup>2</sup> evaluate                                                                                                             | • <sup>2</sup> $(\cos B =)0$                                                      |             |
|     |         | • <sup>3</sup> calculate angle                                                                                                      | • <sup>3</sup> (B=)90 [stated explicitly]                                         |             |
|     |         | • <sup>4</sup> conclusion with reason                                                                                               | • <sup>4</sup> Yes, as angle is a right angle                                     |             |

|    | Question                                                                                                                                                                                                                                                                                                                                                                                        | Generic s                                                               | cheme                             | Illustrative                                                           | scheme                             | Max<br>mark     |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|------------------------------------|-----------------|--|--|--|--|
|    | Notes:                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                   |                                                                        |                                    |                 |  |  |  |  |
| 1. | 1. For method 1 there must be an explicit comparison stated for the award of $\bullet^3$                                                                                                                                                                                                                                                                                                        |                                                                         |                                   |                                                                        |                                    |                 |  |  |  |  |
| 2. | . The conclusion must include a reference to 90 $^\circ$ or a right angle.                                                                                                                                                                                                                                                                                                                      |                                                                         |                                   |                                                                        |                                    |                 |  |  |  |  |
| 3. | (a) Where candidate starts by stating that eg $650^2 = 600^2 + 250^2$ , $\bullet^1$ and $\bullet^3$ are not available<br>$650^2 = 600^2 + 250^2$ $\star \bullet^1 \star \bullet^3$ (marks not available)<br>$422\ 500 = 422\ 500$ $\checkmark \bullet^2$ (evaluation)<br>Yes, as it's right-angled $\checkmark \bullet^4$ (conclusion and reason) award $2/4 \star \checkmark \star \checkmark$ |                                                                         |                                   |                                                                        |                                    |                 |  |  |  |  |
|    | (b) Where candidate starts by stating that eg <b>If triangle is right-angled then</b> $650^2 = 600^2 + 250^2$                                                                                                                                                                                                                                                                                   |                                                                         |                                   |                                                                        |                                    |                 |  |  |  |  |
|    | lf triangl                                                                                                                                                                                                                                                                                                                                                                                      | available<br>e is right-angled the<br>= 422 500 å2                      |                                   | $250^2  \checkmark \bullet^1 \times \bullet^3 (\bullet^3 \text{ not})$ | available)                         |                 |  |  |  |  |
|    | Yes                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | ````                              | ason implicit in $\checkmark \bullet^1$ )                              | award 3/4 √√                       | ´×√             |  |  |  |  |
| 4. |                                                                                                                                                                                                                                                                                                                                                                                                 | ere is no working to in<br>using the perimeter.                         | ndicate how 250                   | has been obtained, the                                                 | en assume it has b                 | een             |  |  |  |  |
|    | . ,                                                                                                                                                                                                                                                                                                                                                                                             | orking shows that 250<br>able; apply the MIs fo                         |                                   | hed by the use of Pythag $^{2}$ , $\bullet^{3}$ and $\bullet^{4}$      | goras' theorem, •                  | <sup>1</sup> is |  |  |  |  |
| 5. | <ul> <li>Inappropriate use of RAD or GRAD should only be penalised once in Qu 3, 7, 11, 14 or 19</li> <li>(a) 1.57 (RAD), no, angle is not a right angle</li> <li>(b) 100 (GRAD), no, angle is not a right angle</li> </ul>                                                                                                                                                                     |                                                                         |                                   |                                                                        |                                    |                 |  |  |  |  |
|    | Variation on <i>N</i><br>eg $600^{2}+250$<br>$\sqrt{422500}$<br>$600^{2}+250$<br>Yes, as an                                                                                                                                                                                                                                                                                                     | = 650<br>$p^2 = 650^2$<br>Igle is a right angle                         |                                   |                                                                        |                                    |                 |  |  |  |  |
| 2. | $(\cos A =)\frac{60}{2}$                                                                                                                                                                                                                                                                                                                                                                        | $\frac{120^2 + 650^2 - 250^2}{2 \times 600 \times 650} = \frac{12}{13}$ | $A = 22 \cdot 6 \dots$            |                                                                        | award 2/4                          | x√√ x           |  |  |  |  |
| 3. | If triangle                                                                                                                                                                                                                                                                                                                                                                                     | is right-angled then                                                    | $BC^2 = 650^2 - 60$               | 0 <sup>2</sup> å <sup>1</sup>                                          |                                    |                 |  |  |  |  |
|    | BC = 250                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | √•² (evalua                       | ation)                                                                 |                                    |                 |  |  |  |  |
|    | 1500 - 650 -                                                                                                                                                                                                                                                                                                                                                                                    | -600 = 250 = BC                                                         | with I                            | it comparison of BC obt<br>3C obtained from perime                     | eter)                              | goras'          |  |  |  |  |
|    | Yes                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | å <sup>4</sup> (conclu            | sion; reason implicit in                                               | $\checkmark \bullet^1$ ) award 4/4 |                 |  |  |  |  |
| 4. | $BC^{2} = 650^{2}$                                                                                                                                                                                                                                                                                                                                                                              | $-600^{2}$                                                              | ×∙¹ (mark r                       | ot available)                                                          |                                    |                 |  |  |  |  |
|    | BC = 250                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | √•² (evalua                       | tion)                                                                  |                                    |                 |  |  |  |  |
|    | 1500-650                                                                                                                                                                                                                                                                                                                                                                                        | -600 = 250 = BC                                                         |                                   | t comparison of BC obta<br>C obtained from perime                      | eter)                              |                 |  |  |  |  |
|    | Yes, as ang                                                                                                                                                                                                                                                                                                                                                                                     | le is a right angle                                                     | $\checkmark \bullet^4$ (conclust) | sion and reason)                                                       | award 3/4                          | ×√√√            |  |  |  |  |
| Q   | uestion | Generic scheme                                                                                                                               | Illustrative scheme                                          | Max<br>mark |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|
| 12. | (a)     | Method 1<br>• <sup>1</sup> linear scale factor                                                                                               | • <sup>1</sup> $\frac{30}{50}$                               | 3           |
|     |         | • <sup>2</sup> know to multiply area by square of linear scale factor                                                                        | • <sup>2</sup> 2750 × $\left(\frac{30}{50}\right)^2$         |             |
|     |         | • <sup>3</sup> find area of smaller sector<br>(calculation must include a<br>power of the linear scale factor)                               | • <sup>3</sup> 990 (cm <sup>2</sup> )                        |             |
|     |         | Method 2<br>• <sup>1</sup> linear scale factor                                                                                               | • <sup>1</sup> $\frac{50}{30}$                               |             |
|     |         | • <sup>2</sup> know to divide area by square of linear scale factor                                                                          | • <sup>2</sup> 2750 ÷ $\left(\frac{50}{30}\right)^2$         |             |
|     |         | • <sup>3</sup> find area of smaller sector<br>(calculation must include a<br>power of the linear scale factor)                               | • <sup>3</sup> 990 (cm <sup>2</sup> )                        |             |
|     |         | Method 3<br>[Combination of (b) and (a)]<br>• <sup>4</sup> • <sup>5</sup> • <sup>6</sup> calculate size of angle ACB<br>(see part (b) below) | • <sup>4</sup> • <sup>5</sup> • <sup>6</sup> 126(·05)        |             |
|     |         | • <sup>1</sup> appropriate fraction                                                                                                          | • <sup>1</sup> $\frac{126(.05)}{360}$                        |             |
|     |         | • <sup>2</sup> consistent substitution into area of sector formula                                                                           | $\bullet^2  \frac{126(\cdot05)}{360} \times \pi \times 30^2$ |             |
|     |         | • <sup>3</sup> calculate area of smaller sector                                                                                              | • <sup>3</sup> 990 (cm <sup>2</sup> )                        |             |

| Qu    | lestion                                   | Generic scheme                                             | Illustrative scheme        | Max<br>mark |
|-------|-------------------------------------------|------------------------------------------------------------|----------------------------|-------------|
| Notes | •                                         | ver without working                                        | award 0/3.                 |             |
|       | is not avail<br>g 2750 — 99               | able where there is invalid subsequen<br>90 = 1760         | t working<br>award 2/3 √√× |             |
| 3. Me | ethod 3: A                                | Accept $\frac{126}{360} \times \pi \times 30^2 = 989.6(0)$ |                            |             |
| Comm  | nonly obse                                | rved responses:                                            |                            |             |
| 1. 27 | $750 \times \frac{30}{50} = 1$            | 650                                                        | award 1/3 √××              |             |
|       | $750 \times \left(\frac{30}{50}\right)^3$ |                                                            | award 2/3 √×√              |             |
| 3. 27 | $750^2 \times \frac{30}{50} =$            | 4537500                                                    | award 1/3 √××              |             |
| 4. 27 | $750 \times \left(\frac{50}{30}\right)^2$ | $= 7638(\cdot 8)$ or 7639                                  | award 2/3 √×√              |             |
| 5. 27 | $750 \times \left(\frac{50}{30}\right)^2$ | $= 2750 \times 1.67^2 = 7669(.4)$                          | award 1/3 √××              |             |
|       |                                           | ounding leads to inaccurate answer)                        |                            |             |
| 6. 27 | $750 \div \left(\frac{50}{30}\right)^2$   | $^{2} = 2750 \div 1.67^{2} = 986(.0)$                      | award 2/3 √√×              |             |
| (P    | remature re                               | ounding leads to inaccurate answer)                        |                            |             |

| Q   | Question |  | Generic scheme                                                                    |                | Illustrative scheme                               | Max<br>mark |
|-----|----------|--|-----------------------------------------------------------------------------------|----------------|---------------------------------------------------|-------------|
| 12. | (b)      |  | Method 1<br>• <sup>4</sup> expression for sector area                             | • <sup>4</sup> | $\frac{\text{angle}}{360} \times \pi \times 50^2$ | 3           |
|     |          |  | • <sup>5</sup> know how to find angle                                             | • <sup>5</sup> | $\frac{2750\times360}{\pi\times50^2}$             |             |
|     |          |  | • <sup>6</sup> calculate angle                                                    | • <sup>6</sup> | 126(·05)                                          |             |
|     |          |  | <ul> <li>Method 2</li> <li><sup>4</sup> sector area: circle area ratio</li> </ul> | • <sup>4</sup> | $\frac{2750}{\pi \times 50^2}$ (=0.35)            |             |
|     |          |  | • <sup>5</sup> know how to find angle                                             | • <sup>5</sup> | $\frac{2750\times360}{\pi\times50^2}$             |             |
|     |          |  | • <sup>6</sup> calculate angle                                                    | • <sup>6</sup> | 126(·05)                                          |             |

|    | Question                                                                                                                                   | Generic scheme                                                                                              | Illustrative scheme                   | Max<br>mark |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|--|--|--|--|
|    | Notes:<br>1. Correct answer without working award 0/3                                                                                      |                                                                                                             |                                       |             |  |  |  |  |
| 2. | Alternative Method 1: $\frac{\text{angle}}{360} \times \pi \times 30^2 \rightarrow \frac{990 \times 360}{\pi \times 30^2} = 126(\cdot 05)$ |                                                                                                             |                                       |             |  |  |  |  |
| 3. | Alternative Method 2: $\frac{990}{\pi \times 30^2} \rightarrow \frac{990 \times 360}{\pi \times 30^2} = 126 (.05)$                         |                                                                                                             |                                       |             |  |  |  |  |
| 4. | •                                                                                                                                          | of the above alternative methods are us<br>ough with possibility of awarding 3/3 fo                         | • • • • •                             | nust be     |  |  |  |  |
| 5. | Accept varia                                                                                                                               | tions in $\pi$                                                                                              |                                       |             |  |  |  |  |
| 6. | Premature ro                                                                                                                               | bunding of $\frac{2750}{\pi \times 50^2}$ must be to at least 2                                             | decimal places                        |             |  |  |  |  |
| 7. |                                                                                                                                            | d of $\bullet^6$ , the calculation must involve a constraint on must include a sector area, $\pi$ , 360 and |                                       |             |  |  |  |  |
| Co | mmonly obse                                                                                                                                | rved responses:                                                                                             |                                       |             |  |  |  |  |
|    |                                                                                                                                            | (b) $\frac{1650 \times 360}{\pi \times 30^2} = 210(.08)$                                                    | award 3/3                             |             |  |  |  |  |
| 2. | (a) 1650 $ ightarrow$                                                                                                                      | (b) $\frac{1650 \times 360}{\pi \times 50^2} = 75()$                                                        | award 2/3 × $\checkmark$ $\checkmark$ |             |  |  |  |  |
| 3. | $\frac{2750 \times 360}{\pi \times 100^2} =$                                                                                               | · 31·5(1)                                                                                                   | award 2/3 ×√√                         |             |  |  |  |  |
| 4. | $\frac{2750\times360}{\pi\times100} =$                                                                                                     | 3151(·2)                                                                                                    | award 2/3 ×√√                         |             |  |  |  |  |
| 5. |                                                                                                                                            | $\sqrt{3151(\cdot 2)} = 56(\cdot 1)$                                                                        | award 1/3 ××√                         |             |  |  |  |  |
| 6. | $\frac{2750}{360} \times \pi \times 50$                                                                                                    | $h^2 = 59995(\cdot 6)$                                                                                      | award 0/3                             |             |  |  |  |  |

| Q    | uestion                                                                                                                                            | Generic scheme Illustrative scheme                                                                                                                                                | Max<br>mark |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| 13.  |                                                                                                                                                    | • <sup>1</sup> correct substitution into gradient formula<br>• <sup>1</sup> $\frac{4p^2-9}{4p-6}$ or $\frac{9-4p^2}{6-4p}$                                                        | 3           |  |  |  |
|      |                                                                                                                                                    | • <sup>2</sup> factorise using difference of two squares $(2p+3)(2p-3)$<br>• <sup>2</sup> or $(3+2p)(3-2p)$                                                                       |             |  |  |  |
|      |                                                                                                                                                    | • <sup>3</sup> factorise using common factor<br>and simplify $\frac{(2p+3)(2p-3)}{2(2p-3)} = \frac{2p+3}{2}$ • <sup>3</sup> or<br>$\frac{(3+2p)(3-2p)}{2(3-2p)} = \frac{3+2p}{2}$ |             |  |  |  |
|      | orrect a                                                                                                                                           | nswer without working award 0/3.                                                                                                                                                  |             |  |  |  |
| 2. A | ccept p                                                                                                                                            | $2+\frac{3}{2}$ for $\bullet^3$                                                                                                                                                   |             |  |  |  |
|      | 3. For subsequent incorrect working • <sup>3</sup> is not available<br>eg $\frac{\chi' p+3}{\chi'} = p+3$ award 2/3 $\checkmark \checkmark \times$ |                                                                                                                                                                                   |             |  |  |  |
| Com  | Commonly observed responses:                                                                                                                       |                                                                                                                                                                                   |             |  |  |  |

| Question |                                                                                              | Generic scheme                                                         | Illustrative scheme                                                | Max<br>mark |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|--|--|--|--|
| 14.      |                                                                                              | • <sup>1</sup> rearrange equation                                      | • <sup>1</sup> $\cos x = -\frac{1}{5}$ or equivalent               | 3           |  |  |  |  |
|          |                                                                                              | • <sup>2</sup> find one value of $x$                                   | • <sup>2</sup> $101 \cdot 5(3)$<br>• <sup>3</sup> $258 \cdot 4(6)$ |             |  |  |  |  |
|          |                                                                                              | • <sup>3</sup> find second value of $x$                                | • <sup>3</sup> 258·4(6)                                            |             |  |  |  |  |
|          | tes:<br>Correct answ                                                                         | ver without working                                                    | award 0/3.                                                         |             |  |  |  |  |
| 2.       | Accept (a) 1                                                                                 | 02 and 258 (b) 101·6 (180–78·4) and 2                                  | 58·4 (180+78·4) with valid working.                                |             |  |  |  |  |
| 3.       | Do not penal                                                                                 | ise omission of degrees sign.                                          |                                                                    |             |  |  |  |  |
|          |                                                                                              | then $\bullet^2$ and $\bullet^3$ are only available for cons           | istent 2 <sup>nd</sup> and 3 <sup>rd</sup> quadrant angles         |             |  |  |  |  |
|          | eg $\cos x = -$                                                                              | $\frac{1}{5} \rightarrow$ (a) 78.5, 101.5                              | award 2/3 √×√                                                      |             |  |  |  |  |
|          | (b) 78·5, 258<br>(c) 78·5, 281                                                               |                                                                        | award 2/3 √×√<br>award 1/3 √××                                     |             |  |  |  |  |
| 5.       | If $\cos x > 0t$<br>angle                                                                    | hen $\bullet^2$ is not available (working eased)                       | but $\bullet^3$ is available for consistent 4th qu                 | uadrant     |  |  |  |  |
|          | eg $\cos x = \frac{1}{5}$                                                                    | → (a) 78·5, 101·5                                                      | award 0/3                                                          |             |  |  |  |  |
|          | (b) 78.5, 258<br>(c) 78.5, 281                                                               |                                                                        | award 0/3<br>award 1/3 ××√                                         |             |  |  |  |  |
|          | (d) 101.5, 25                                                                                |                                                                        | award 0/3                                                          |             |  |  |  |  |
| 6.       |                                                                                              | arly included as one of the final answe                                | rs then award marks as follows:                                    |             |  |  |  |  |
|          | eg $\cos x = -$                                                                              | $\frac{1}{5} \rightarrow$ (a) 78.5, 101.5, 258.5                       | award $2/3 \checkmark \times \checkmark$                           |             |  |  |  |  |
|          |                                                                                              | (b) 78·5, 101·5, 281·5<br>(c) 78·5, 101·5, 258·5, 281·5                | award 1/3 √××<br>award 1/3 √××                                     |             |  |  |  |  |
| 7.       |                                                                                              | iate use of RAD should only be penalise                                | ed once in Qu 3, 7, 11, 14 or 19                                   |             |  |  |  |  |
|          |                                                                                              | = 1·3… → 178·6… , 181·3…                                               |                                                                    |             |  |  |  |  |
|          | (b) However,                                                                                 | , for $\cos^{-1}\left(-\frac{1}{5}\right) = 1.7 \rightarrow 1.7$ , 358 | •3 award $1/3 \checkmark \times \times$ since the answe            | rs are      |  |  |  |  |
|          |                                                                                              | nd 3 <sup>rd</sup> quadrant angles                                     |                                                                    |             |  |  |  |  |
| 8.       |                                                                                              | e use of GRAD should only be penalised                                 | l once in Qu 3, 7, 11, 14 or 19                                    |             |  |  |  |  |
|          |                                                                                              | $=$ 87 $\cdot$ 1 $\rightarrow$ 92 $\cdot$ 8 , 267 $\cdot$ 1            |                                                                    |             |  |  |  |  |
|          | (b) $\cos^{-1}\left(-\frac{1}{5}\right) = 112 \cdot 8 \rightarrow 112 \cdot 8 , 247 \cdot 2$ |                                                                        |                                                                    |             |  |  |  |  |
|          | -                                                                                            | erved responses:                                                       |                                                                    |             |  |  |  |  |
| 1.       | $\cos x = \frac{3}{5} \rightarrow$                                                           | 53·1, 306·9 award 1/3 ××√                                              |                                                                    |             |  |  |  |  |

| Q   | uestio | n | Generic scheme                                                                                      | Illustrative scheme                      | Max<br>mark |
|-----|--------|---|-----------------------------------------------------------------------------------------------------|------------------------------------------|-------------|
| 15. |        |   | • <sup>1</sup> correct denominator                                                                  | •1 $(x-2)(x+5)$                          | 3           |
|     |        |   | • <sup>2</sup> correct numerator                                                                    | • <sup>2</sup> $4(x+5)-3(x-2)$           |             |
|     |        |   | • <sup>3</sup> express in simplest form (remove<br>brackets in numerator and<br>collect like terms) | • <sup>3</sup> $\frac{x+26}{(x-2)(x+5)}$ |             |

Notes:

1. Correct answer without working award 3/3

2. Accept 
$$\frac{4(x+5)}{(x-2)(x+5)} - \frac{3(x-2)}{(x-2)(x+5)}$$
 for the award of  $\bullet^1$  and  $\bullet^2$ 

- 3. Do not accept x-2(x+5) or (x-2)x+5 for the award of  $\bullet^1$  unless the correct expansion appears in the final answer
- 4. Where a candidate chooses to expand the brackets in the denominator, then  $\bullet^3$  is only available for a correct expansion **eg**

(a) 
$$\frac{4(x+5)}{(x-2)(x+5)} - \frac{3(x-2)}{(x-2)(x+5)} = \frac{x+26}{x^2+3x-10}$$
 award 3/3  
(b)  $\frac{4(x+5)}{(x-2)(x+5)} - \frac{3(x-2)}{(x-2)(x+5)} = \frac{x+26}{x^2-10}$  award 2/3  $\checkmark \checkmark \times$   
(c)  $\frac{4(x+5)}{x^2-10} - \frac{3(x-2)}{x^2-10} = \frac{x+26}{x^2-10}$  award 2/3  $\times \checkmark \checkmark$ 

5. For subsequent incorrect working,  $\bullet^3$  is not available eg

|    | $\frac{x+26}{x^2+3x-10} = \frac{26}{x^2-7}$                                    | award 2/3 √√× |
|----|--------------------------------------------------------------------------------|---------------|
| Со | mmonly observed responses:                                                     |               |
| 1. | $\frac{4x+20}{(x-2)(x+5)} - \frac{3x-6}{(x-2)(x+5)} = \frac{x+14}{(x-2)(x+5)}$ | award 2/3 √√× |
|    |                                                                                |               |
| 2. | $\frac{4x+5}{(x-2)(x+5)} - \frac{3x-2}{(x-2)(x+5)} = \frac{x+7}{(x-2)(x+5)}$   | award 1/3 √×× |
|    | (x-2)(x+5) $(x-2)(x+5)$ $(x-2)(x+5)$                                           |               |

| Question  |                                                                                                                                                                                                                                                                                                                                                                                            | Generic scheme                                                    | Illustrative scheme                      | Max<br>mark |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-------------|--|--|
| 16.       |                                                                                                                                                                                                                                                                                                                                                                                            | • <sup>1</sup> apply $a^m \times ka^n = ka^{m+n}$                 | • <sup>1</sup> eg $a^4 \times 3a = 3a^5$ | 3           |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                            | • <sup>2</sup> evidence of $\sqrt{a} = a^{\frac{1}{2}}$           | $\bullet^2 a^{\frac{1}{2}}$              |             |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                            | • <sup>3</sup> complete simplification                            | • $3a^{\frac{9}{2}}$                     |             |  |  |
| Not<br>1. | -                                                                                                                                                                                                                                                                                                                                                                                          | swer without working award 3/3.                                   |                                          |             |  |  |
| 2.        | Accept 3 <i>a</i>                                                                                                                                                                                                                                                                                                                                                                          | $4\frac{1}{2}$ or $3a^{4\cdot 5}$ (as bad form).                  |                                          |             |  |  |
|           | (a) Accept<br>(b) Do not                                                                                                                                                                                                                                                                                                                                                                   | $3\sqrt{a^9}$ .<br>penalise $3a^{\frac{9}{2}} = 3\sqrt[9]{a^2}$ . |                                          |             |  |  |
|           | 4. Where candidate starts by rationalising the denominator, $\bullet^1$ is available for<br>eg (i) obtaining $3a^5$ as follows: $\frac{a^4 \times 3a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = \frac{3a^5 \times \sqrt{a}}{a}$<br>(ii) obtaining $3a^4$ as follows: $\frac{a^4 \times 3a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = 3a^4 \times \sqrt{a}$ or $a^4 \times 3\sqrt{a}$ |                                                                   |                                          |             |  |  |
|           | 5. <b>BEWARE</b> • <sup>1</sup> is not available where $3a^5$ has been obtained incorrectly<br>eg $\frac{a^4 \times 3a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = \frac{a^4 \times 3a \times \sqrt{a}}{a} = \frac{\sqrt{3a^5}}{a}$                                                                                                                                                      |                                                                   |                                          |             |  |  |
| Con       | nmonly ob                                                                                                                                                                                                                                                                                                                                                                                  | served responses:                                                 |                                          |             |  |  |

| Question                                                                                     |                                                                                                                                                                                                                                                                                                                                                              | Generic scheme                                                           | Illustrative scheme                                                  | Max<br>mark |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|--|--|--|
| 17.                                                                                          |                                                                                                                                                                                                                                                                                                                                                              | • <sup>1</sup> expand brackets                                           | • <sup>1</sup> $\sin^2 x + \sin x \cos x + \cos x \sin x + \cos^2 x$ | 2           |  |  |  |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                              | • <sup>2</sup> simplify expression                                       | • <sup>2</sup> 1+2 sin x cos x                                       |             |  |  |  |
| Note<br>1. C                                                                                 |                                                                                                                                                                                                                                                                                                                                                              | nswer without working                                                    | award 0/2                                                            |             |  |  |  |
| 2. D                                                                                         | o not pe                                                                                                                                                                                                                                                                                                                                                     | enalise omission of degrees sign                                         |                                                                      |             |  |  |  |
| 3. A                                                                                         | ccept 1                                                                                                                                                                                                                                                                                                                                                      | $+\sin 2x$                                                               |                                                                      |             |  |  |  |
| 4. A                                                                                         | ccept (s                                                                                                                                                                                                                                                                                                                                                     | $(\sin x)^2$ and $(\cos x)^2$ or $\sin x \sin x$ and $\cos x$            | x cos x                                                              |             |  |  |  |
|                                                                                              | `                                                                                                                                                                                                                                                                                                                                                            | $(\ln x)^{2} + 2\sin x \cos x + (\cos x)^{2} = 1 + 2\sin x \cos x$       |                                                                      |             |  |  |  |
|                                                                                              | (b) sin                                                                                                                                                                                                                                                                                                                                                      | $x\sin x + 2\sin x\cos x + \cos x\cos x = 1 + 2\sin x$                   | x cos x award 2/2                                                    |             |  |  |  |
| 5. D                                                                                         | o not ac                                                                                                                                                                                                                                                                                                                                                     | cept $\sin x^2$ and $\cos x^2$ .                                         |                                                                      |             |  |  |  |
| e                                                                                            | $g \sin x^2$                                                                                                                                                                                                                                                                                                                                                 | $+2\sin x\cos x + \cos x^2 = 1 + 2\sin x\cos x$                          | award 1/2 ×√                                                         |             |  |  |  |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                              | wailable if there are no variables<br>$2\sin\cos^2 = 1 + 2\sin\cos^2$    | award 1/2 ×√                                                         |             |  |  |  |
| <b>7.</b> ● <sup>2</sup>                                                                     | <sup>2</sup> is not a                                                                                                                                                                                                                                                                                                                                        | available if there is invalid subsequent wor                             | king                                                                 |             |  |  |  |
| • <sup>1</sup>                                                                               | 8. Alternative acceptable strategy:<br>• $1\left(\frac{o}{h}\right)^2 + \left(\frac{o}{h}\right)\left(\frac{a}{h}\right) + \left(\frac{a}{h}\right)\left(\frac{o}{h}\right) + \left(\frac{a}{h}\right)^2$<br>• $2\left(\frac{o}{h}\right)^2 + 2\left(\frac{o}{h}\right)\left(\frac{a}{h}\right) + \left(\frac{a}{h}\right)^2 = 1 + 2\sin x \cos x$ award 2/2 |                                                                          |                                                                      |             |  |  |  |
| -                                                                                            |                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                                                      |             |  |  |  |
| Commonly observed responses:<br>1. $(\sin x + \cos x)^2 = \sin^2 x + \cos^2 x = 1$ award 0/2 |                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                                                      |             |  |  |  |
| <b>2.</b> (si                                                                                | $\sin x + \cos x$                                                                                                                                                                                                                                                                                                                                            | $(\sin x)^2 = \sin^2 x + \sin x \cos x + \cos^2 x = 1 + \sin x \cos^2 x$ | $\cos x$ award 1/2 × $\checkmark$                                    |             |  |  |  |

| Question     |                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                  | Generic scheme                                                                   |                | Illustrative scheme                         | Max<br>mark |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|----------------|---------------------------------------------|-------------|--|
| 18.          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | • <sup>1</sup> marshal facts and recognise right-angled triangle                 | •1             | 7.5<br>r 7.5                                | 4           |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | • <sup>2</sup> consistent Pythagoras statement                                   | •2             | $7.5^2 + 7.5^2$                             |             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | • <sup>3</sup> calculate radius of larger circle                                 | • <sup>3</sup> | 10.6                                        |             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | • <sup>4</sup> calculate CD                                                      | •4             | 25·6(cm)                                    |             |  |
| Note<br>1. C |                                                                                                                                                                                                                                                                                                                                                                                                                                      | answ               | er without working                                                               |                | award 0/4.                                  |             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | ce of a diagram, or a diagram without the award of $\bullet^1$ and $\bullet^2$ . | ıt ri          | ght angle indicated, accept $7{\cdot}5^2$ + | 7∙5² as     |  |
|              | BEWARI<br>/here a                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | ram is shown, working must be consiste                                           | ent            | with the diagram.                           |             |  |
| 4. •         | $e^2$ and $e^3$                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>3</sup> are a | available for a valid trigonometric met                                          | hod            |                                             |             |  |
| 5. •         | <sup>3</sup> is ava                                                                                                                                                                                                                                                                                                                                                                                                                  | ilable             | e for a consistent calculation of a lengt                                        | :h u           | sing Pythagoras or trigonometry             |             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  | ailable following a Pythagoras (or triving $7.5$ or 15.                          | gono           | ometric) calculation within a right         | -angled     |  |
| 7. C         | Disregar                                                                                                                                                                                                                                                                                                                                                                                                                             | rd err             | ors due to premature rounding provide                                            | ed tl          | nere is evidence.                           |             |  |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | rved responses:                                                                  |                |                                             |             |  |
| (            | 1. [Triangle SBT with SB = ST = 15] $r^2 = 15^2 + 15^2 \rightarrow r = 21 \cdot 2 \rightarrow CD = 51 \cdot 2$ award $3/4 \checkmark \times \checkmark \checkmark$ (a) working inconsistent with correct diagramaward $3/4 \checkmark \times \checkmark \checkmark$ (b) working consistent with candidate's diagramaward $3/4 \times \checkmark \checkmark \checkmark$ (c) no diagramaward $2/4 \times \times \checkmark \checkmark$ |                    |                                                                                  |                |                                             |             |  |
| -            | [Square with side AB] $d^2 = 15^2 + 15^2 \rightarrow r = 10.6 \rightarrow CD = 25.6$<br>If consistent with a correct diagram award 4/4; otherwise apply COR 1 MIs                                                                                                                                                                                                                                                                    |                    |                                                                                  |                |                                             |             |  |
| 3. ſ         | Triangl                                                                                                                                                                                                                                                                                                                                                                                                                              | e ATE              | 3] $r^2 + r^2 = 15^2 \rightarrow r = 10.6 \rightarrow \text{CD} = 25.6$          |                |                                             |             |  |
| -            | [Indigle AID] $7 \pm 7 = 13 \rightarrow 7 = 10.0 \rightarrow CD = 23.0$                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                                  |                |                                             |             |  |

Apply MIs and Note 2 becomes accept  $r^2 + r^2 = 15^2$  as evidence for the award of  $\bullet^1$  and  $\bullet^2$ 

| Q   | uestion | Generic scheme                                                                             | Illustrative scheme Ma                                                                       |   |
|-----|---------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|
| 19. |         | Method 1<br>• <sup>1</sup> correct substitution into sine rule                             | • $\frac{BK}{\sin 34} = \frac{350}{\sin 94}$ 5                                               | 5 |
|     |         | • <sup>2</sup> re-arrange formula                                                          | $\bullet^2  BK = \frac{350\sin 34}{\sin 94}$                                                 |   |
|     |         | • <sup>3</sup> calculate BK                                                                | • <sup>3</sup> 196(·195)                                                                     |   |
|     |         | • <sup>4</sup> consistent substitution into appropriate trig formula                       | • <sup>4</sup> $\sin 52 = \frac{h}{196} \text{ or } \frac{h}{\sin 52} = \frac{196}{\sin 90}$ |   |
|     |         | • <sup>5</sup> calculate height using trigonometry                                         | • <sup>5</sup> 154·6 (m)                                                                     |   |
|     |         | Method 2<br>• <sup>1</sup> correct substitution into sine rule                             | $\bullet^1  \frac{BM}{\sin 52} = \frac{350}{\sin 94}$                                        |   |
|     |         | • <sup>2</sup> re-arrange formula                                                          | $\bullet^2  BM = \frac{350\sin 52}{\sin 94}$                                                 |   |
|     |         | • <sup>3</sup> calculate BM                                                                | • <sup>3</sup> 276(·477)                                                                     |   |
|     |         | <ul> <li><sup>4</sup> consistent substitution into<br/>appropriate trig formula</li> </ul> | • <sup>4</sup> $\sin 34 = \frac{h}{276} \text{ or } \frac{h}{\sin 34} = \frac{276}{\sin 90}$ |   |
|     |         | • <sup>5</sup> calculate height <b>using</b><br><b>trigonometry</b>                        | • <sup>5</sup> 154·6 (m)                                                                     |   |

|                              | Question                                                                                                                                                                                                                                                                                                                                                          | Generic scheme                                                                                          | Illustrative scheme                                                             | Max<br>mark |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------|
|                              | Notes:<br>1. Correct answer without working award 0/5.                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                 |             |
| 2.                           | Do not penalise omission of degrees signs.                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                 |             |
| 3.                           | Disregard errors due to premature rounding provided there is evidence.<br>However, do not accept sin34, sin52 or sin94 rounded to less than 3 decimal places.<br>eg $BM = \frac{350 \sin 52}{\sin 94} = \frac{275 \cdot 8}{0 \cdot 99} = 275 \cdot 59 \rightarrow h = 275 \cdot 59 \sin 34 = 155 \cdot 8$ award $4/5 \checkmark \checkmark \checkmark \checkmark$ |                                                                                                         |                                                                                 |             |
| 4.                           | Where both BK and BM are calculated but one is calculated incorrectly, if there is<br>(a) further working then apply the MIs based on the length used to calculate the height<br>(b) no further working disregard incorrect length ie award 3/5                                                                                                                   |                                                                                                         |                                                                                 |             |
| 5.                           | Alternative strategy for $\bullet^4$ and $\bullet^5$                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                 |             |
|                              | 2                                                                                                                                                                                                                                                                                                                                                                 | $ \langle 350 \times 196(\cdot 195) \times \sin 52(= 27055 \cdot) $                                     |                                                                                 |             |
| 6.                           | <ul> <li>Inappropriate use of GRAD or RAD should only be penalised once in Qu 3, 7, 11, 14 or 19</li> <li>(a) 130 · 4 (GRAD)</li> </ul>                                                                                                                                                                                                                           |                                                                                                         |                                                                                 |             |
|                              | . ,                                                                                                                                                                                                                                                                                                                                                               | . (RAD); ● <sup>5</sup> is <b>not</b> available due to the r<br>D has already been penalised in Qu 3, 3 | egative length. However, • <sup>3</sup> is availab<br>7, 11, 14 or 19           | ole if      |
| Commonly observed responses: |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                                                                 |             |
| 1.                           | $\frac{x}{\sin 52} = \frac{350}{\sin 3}$                                                                                                                                                                                                                                                                                                                          | $\frac{1}{34} \rightarrow x = 493(\dots)$                                                               | award 2/5 ×√√××                                                                 |             |
| 2.                           | eg $\frac{BK}{34} = \frac{350}{94}$                                                                                                                                                                                                                                                                                                                               | $\rightarrow$ BK = 126(·59) $\rightarrow$ h = 126(·59) $\times$ sin 52                                  | $= 99(.75) \qquad \text{award } 2/5 \times \times \times \checkmark \checkmark$ |             |

[END OF MARKING INSTRUCTIONS]